|
import warnings |
|
import psycopg2 |
|
from io import BytesIO |
|
from diffusers.configuration_utils import ConfigMixin, register_to_config |
|
from diffusers.schedulers.scheduling_utils import SchedulerMixin |
|
from scipy.io import wavfile |
|
import soundfile as sf |
|
import os |
|
warnings.filterwarnings("ignore") |
|
import sys |
|
from generation_utilities import * |
|
|
|
import numpy as np |
|
from PIL import Image |
|
|
|
import shutil |
|
import torch |
|
from IPython.display import Audio |
|
from audiodiffusion import AudioDiffusion, AudioDiffusionPipeline |
|
from audiodiffusion.audio_encoder import AudioEncoder |
|
import librosa |
|
import librosa.display |
|
|
|
import IPython.display as ipd |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
|
|
audio_diffusion = AudioDiffusionPipeline.from_pretrained("SAint7579/orpheus_ldm_model_v1-0").to(device) |
|
ddim = AudioDiffusionPipeline.from_pretrained("teticio/audio-diffusion-ddim-256").to(device) |
|
|
|
|
|
|
|
|
|
|
|
try: |
|
import librosa |
|
|
|
_librosa_can_be_imported = True |
|
_import_error = "" |
|
except Exception as e: |
|
_librosa_can_be_imported = False |
|
_import_error = ( |
|
f"Cannot import librosa because {e}. Make sure to correctly install librosa to be able to install it." |
|
) |
|
|
|
|
|
class Mel(ConfigMixin, SchedulerMixin): |
|
""" |
|
Parameters: |
|
x_res (`int`): x resolution of spectrogram (time) |
|
y_res (`int`): y resolution of spectrogram (frequency bins) |
|
sample_rate (`int`): sample rate of audio |
|
n_fft (`int`): number of Fast Fourier Transforms |
|
hop_length (`int`): hop length (a higher number is recommended for lower than 256 y_res) |
|
top_db (`int`): loudest in decibels |
|
n_iter (`int`): number of iterations for Griffin Linn mel inversion |
|
""" |
|
|
|
config_name = "mel_config.json" |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
x_res: int = 256, |
|
y_res: int = 256, |
|
sample_rate: int = 22050, |
|
n_fft: int = 2048, |
|
hop_length: int = 512, |
|
top_db: int = 80, |
|
n_iter: int = 32, |
|
): |
|
self.hop_length = hop_length |
|
self.sr = sample_rate |
|
self.n_fft = n_fft |
|
self.top_db = top_db |
|
self.n_iter = n_iter |
|
self.set_resolution(x_res, y_res) |
|
self.audio = None |
|
|
|
if not _librosa_can_be_imported: |
|
raise ValueError(_import_error) |
|
|
|
def set_resolution(self, x_res: int, y_res: int): |
|
"""Set resolution. |
|
|
|
Args: |
|
x_res (`int`): x resolution of spectrogram (time) |
|
y_res (`int`): y resolution of spectrogram (frequency bins) |
|
""" |
|
self.x_res = x_res |
|
self.y_res = y_res |
|
self.n_mels = self.y_res |
|
self.slice_size = self.x_res * self.hop_length - 1 |
|
|
|
def load_audio(self, audio_file: str = None, raw_audio: np.ndarray = None): |
|
"""Load audio. |
|
|
|
Args: |
|
audio_file (`str`): must be a file on disk due to Librosa limitation or |
|
raw_audio (`np.ndarray`): audio as numpy array |
|
""" |
|
if audio_file is not None: |
|
self.audio, _ = librosa.load(audio_file, mono=True, sr=self.sr) |
|
else: |
|
self.audio = raw_audio |
|
|
|
|
|
if len(self.audio) < self.x_res * self.hop_length: |
|
self.audio = np.concatenate([self.audio, np.zeros((self.x_res * self.hop_length - len(self.audio),))]) |
|
|
|
def get_number_of_slices(self) -> int: |
|
"""Get number of slices in audio. |
|
|
|
Returns: |
|
`int`: number of spectograms audio can be sliced into |
|
""" |
|
return len(self.audio) // self.slice_size |
|
|
|
def get_audio_slice(self, slice: int = 0) -> np.ndarray: |
|
"""Get slice of audio. |
|
|
|
Args: |
|
slice (`int`): slice number of audio (out of get_number_of_slices()) |
|
|
|
Returns: |
|
`np.ndarray`: audio as numpy array |
|
""" |
|
return self.audio[self.slice_size * slice : self.slice_size * (slice + 1)] |
|
|
|
def get_sample_rate(self) -> int: |
|
"""Get sample rate: |
|
|
|
Returns: |
|
`int`: sample rate of audio |
|
""" |
|
return self.sr |
|
|
|
def audio_slice_to_image(self, slice: int, ref=np.max) -> Image.Image: |
|
"""Convert slice of audio to spectrogram. |
|
|
|
Args: |
|
slice (`int`): slice number of audio to convert (out of get_number_of_slices()) |
|
|
|
Returns: |
|
`PIL Image`: grayscale image of x_res x y_res |
|
""" |
|
S = librosa.feature.melspectrogram( |
|
y=self.get_audio_slice(slice), sr=self.sr, n_fft=self.n_fft, hop_length=self.hop_length, n_mels=self.n_mels |
|
) |
|
log_S = librosa.power_to_db(S, ref=ref, top_db=self.top_db) |
|
bytedata = (((log_S + self.top_db) * 255 / self.top_db).clip(0, 255) + 0.5).astype(np.uint8) |
|
image = Image.fromarray(bytedata) |
|
return image |
|
|
|
def image_to_audio(self, image: Image.Image) -> np.ndarray: |
|
"""Converts spectrogram to audio. |
|
|
|
Args: |
|
image (`PIL Image`): x_res x y_res grayscale image |
|
|
|
Returns: |
|
audio (`np.ndarray`): raw audio |
|
""" |
|
bytedata = np.frombuffer(image.tobytes(), dtype="uint8").reshape((image.height, image.width)) |
|
log_S = bytedata.astype("float") * self.top_db / 255 - self.top_db |
|
S = librosa.db_to_power(log_S) |
|
audio = librosa.feature.inverse.mel_to_audio( |
|
S, sr=self.sr, n_fft=self.n_fft, hop_length=self.hop_length, n_iter=self.n_iter |
|
) |
|
return audio |
|
|
|
def audioarray_to_mp3(audioarray, file_path): |
|
sample_rate = 22050 |
|
mel = Mel() |
|
|
|
temp_wav_file = "temp.wav" |
|
wavfile.write(temp_wav_file, sample_rate, audioarray) |
|
|
|
|
|
os.remove(file_path) |
|
output_mp3_file = file_path |
|
|
|
|
|
wav_data, sr = sf.read(temp_wav_file) |
|
|
|
|
|
sf.write(output_mp3_file, wav_data, sample_rate, format="MP3") |
|
|
|
return None |
|
|
|
def audioarray_to_mp3_highdb(audioarray, file_path): |
|
sample_rate = 22050 |
|
|
|
temp_wav_file = "temp.wav" |
|
|
|
audio = ipd.Audio(audioarray, rate=sample_rate) |
|
|
|
|
|
with open(file_path, 'wb') as f: |
|
f.write(audio.data) |
|
|
|
return None |
|
|
|
|
|
def main(): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
song1_name=sys.argv[1] |
|
song2_name=sys.argv[2] |
|
song3_name=sys.argv[3] |
|
similarity_index=float(sys.argv[4])/100 |
|
print("Similarity index is",similarity_index) |
|
print("Song1 name is",song1_name) |
|
print("Song2 name is",song2_name) |
|
print("Song3 name is",song3_name) |
|
print("Similarity index is",similarity_index) |
|
|
|
mel = Mel() |
|
|
|
|
|
|
|
|
|
input_songs_array = [] |
|
|
|
if song1_name != "None": |
|
song_array_1, sr = librosa.load(f"input_songs/{song1_name}.mp3", sr=22050) |
|
input_songs_array.append(song_array_1) |
|
|
|
|
|
|
|
if song2_name != "None": |
|
song_array_2, sr = librosa.load(f"input_songs/{song2_name}.mp3", sr=22050) |
|
input_songs_array.append(song_array_2) |
|
|
|
|
|
|
|
|
|
if song3_name != "None": |
|
song_array_3, sr = librosa.load(f"input_songs/{song3_name}.mp3", sr=22050) |
|
input_songs_array.append(song_array_3) |
|
|
|
|
|
mage, audio = generate_songs(input_songs_array, similarity=similarity_index, quality=200) |
|
mage.save("audio/thumbnail.png") |
|
audioarray_to_mp3_highdb(audio,"audio/generated_song.mp3") |
|
|
|
|
|
|
|
print("Python script executed successfully") |
|
|
|
if __name__ == "__main__": |
|
main() |