Orpheus / change_song.py
baakaani's picture
initial commit
36ad38b
raw
history blame
9.24 kB
import warnings
import psycopg2
from io import BytesIO
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.schedulers.scheduling_utils import SchedulerMixin
from scipy.io import wavfile
import soundfile as sf
import os
warnings.filterwarnings("ignore")
import sys
from generation_utilities import *
import numpy as np # noqa: E402
from PIL import Image # noqa: E402
import shutil
import torch
from IPython.display import Audio
from audiodiffusion import AudioDiffusion, AudioDiffusionPipeline
from audiodiffusion.audio_encoder import AudioEncoder
import librosa
import librosa.display
import IPython.display as ipd
device = "cuda" if torch.cuda.is_available() else "cpu"
# audio_diffusion = AudioDiffusionPipeline.from_pretrained("teticio/latent-audio-diffusion-256").to(device)
audio_diffusion = AudioDiffusionPipeline.from_pretrained("SAint7579/orpheus_ldm_model_v1-0").to(device)
ddim = AudioDiffusionPipeline.from_pretrained("teticio/audio-diffusion-ddim-256").to(device)
try:
import librosa # noqa: E402
_librosa_can_be_imported = True
_import_error = ""
except Exception as e:
_librosa_can_be_imported = False
_import_error = (
f"Cannot import librosa because {e}. Make sure to correctly install librosa to be able to install it."
)
class Mel(ConfigMixin, SchedulerMixin):
"""
Parameters:
x_res (`int`): x resolution of spectrogram (time)
y_res (`int`): y resolution of spectrogram (frequency bins)
sample_rate (`int`): sample rate of audio
n_fft (`int`): number of Fast Fourier Transforms
hop_length (`int`): hop length (a higher number is recommended for lower than 256 y_res)
top_db (`int`): loudest in decibels
n_iter (`int`): number of iterations for Griffin Linn mel inversion
"""
config_name = "mel_config.json"
@register_to_config
def __init__(
self,
x_res: int = 256,
y_res: int = 256,
sample_rate: int = 22050,
n_fft: int = 2048,
hop_length: int = 512,
top_db: int = 80,
n_iter: int = 32,
):
self.hop_length = hop_length
self.sr = sample_rate
self.n_fft = n_fft
self.top_db = top_db
self.n_iter = n_iter
self.set_resolution(x_res, y_res)
self.audio = None
if not _librosa_can_be_imported:
raise ValueError(_import_error)
def set_resolution(self, x_res: int, y_res: int):
"""Set resolution.
Args:
x_res (`int`): x resolution of spectrogram (time)
y_res (`int`): y resolution of spectrogram (frequency bins)
"""
self.x_res = x_res
self.y_res = y_res
self.n_mels = self.y_res
self.slice_size = self.x_res * self.hop_length - 1
def load_audio(self, audio_file: str = None, raw_audio: np.ndarray = None):
"""Load audio.
Args:
audio_file (`str`): must be a file on disk due to Librosa limitation or
raw_audio (`np.ndarray`): audio as numpy array
"""
if audio_file is not None:
self.audio, _ = librosa.load(audio_file, mono=True, sr=self.sr)
else:
self.audio = raw_audio
# Pad with silence if necessary.
if len(self.audio) < self.x_res * self.hop_length:
self.audio = np.concatenate([self.audio, np.zeros((self.x_res * self.hop_length - len(self.audio),))])
def get_number_of_slices(self) -> int:
"""Get number of slices in audio.
Returns:
`int`: number of spectograms audio can be sliced into
"""
return len(self.audio) // self.slice_size
def get_audio_slice(self, slice: int = 0) -> np.ndarray:
"""Get slice of audio.
Args:
slice (`int`): slice number of audio (out of get_number_of_slices())
Returns:
`np.ndarray`: audio as numpy array
"""
return self.audio[self.slice_size * slice : self.slice_size * (slice + 1)]
def get_sample_rate(self) -> int:
"""Get sample rate:
Returns:
`int`: sample rate of audio
"""
return self.sr
def audio_slice_to_image(self, slice: int, ref=np.max) -> Image.Image:
"""Convert slice of audio to spectrogram.
Args:
slice (`int`): slice number of audio to convert (out of get_number_of_slices())
Returns:
`PIL Image`: grayscale image of x_res x y_res
"""
S = librosa.feature.melspectrogram(
y=self.get_audio_slice(slice), sr=self.sr, n_fft=self.n_fft, hop_length=self.hop_length, n_mels=self.n_mels
)
log_S = librosa.power_to_db(S, ref=ref, top_db=self.top_db)
bytedata = (((log_S + self.top_db) * 255 / self.top_db).clip(0, 255) + 0.5).astype(np.uint8)
image = Image.fromarray(bytedata)
return image
def image_to_audio(self, image: Image.Image) -> np.ndarray:
"""Converts spectrogram to audio.
Args:
image (`PIL Image`): x_res x y_res grayscale image
Returns:
audio (`np.ndarray`): raw audio
"""
bytedata = np.frombuffer(image.tobytes(), dtype="uint8").reshape((image.height, image.width))
log_S = bytedata.astype("float") * self.top_db / 255 - self.top_db
S = librosa.db_to_power(log_S)
audio = librosa.feature.inverse.mel_to_audio(
S, sr=self.sr, n_fft=self.n_fft, hop_length=self.hop_length, n_iter=self.n_iter
)
return audio
def audioarray_to_mp3(audioarray, file_path):
sample_rate = 22050
mel = Mel()
# Save the audio array as a temporary WAV file
temp_wav_file = "temp.wav"
wavfile.write(temp_wav_file, sample_rate, audioarray)
# Set the output MP3 file path
os.remove(file_path)
output_mp3_file = file_path
# Load the temporary WAV file
wav_data, sr = sf.read(temp_wav_file)
# Convert the WAV data to MP3 format
sf.write(output_mp3_file, wav_data, sample_rate, format="MP3")
return None
def audioarray_to_mp3_highdb(audioarray, file_path):
sample_rate = 22050
# Save the audio array as a temporary WAV file
temp_wav_file = "temp.wav"
audio = ipd.Audio(audioarray, rate=sample_rate)
## Write file into a wav file with open
with open(file_path, 'wb') as f:
f.write(audio.data)
return None
def main():
# # Connect to the PostgreSQL database
# conn = psycopg2.connect(database="orpheus", user="postgres", password="1234", host="localhost", port="5432")
# cur = conn.cursor()
# # Assuming you have a table named 'images' with columns 'id' (serial primary key) and 'image_data' (bytea)
# table_name = "songs"
# image_id = np.random.randint(1, 10) # Replace with the actual ID of the image you want to retrieve
# print(image_id)
# # Retrieve the image data from the database
# cur.execute(f"SELECT song FROM {table_name} WHERE id = %s", (image_id,))
# result = cur.fetchone()
# # Convert the bytea data to PIL.Image.Image object
# image_bytes = BytesIO(result[0])
# image = Image.open(image_bytes)
# # image.save("C:/VS code projects/Orpheus-2/audio/thumbnail.png")
# # Close the database connection
# cur.close()
# conn.close()
# getting the song names
song1_name=sys.argv[1]
song2_name=sys.argv[2]
song3_name=sys.argv[3]
similarity_index=float(sys.argv[4])/100
print("Similarity index is",similarity_index)
print("Song1 name is",song1_name)
print("Song2 name is",song2_name)
print("Song3 name is",song3_name)
print("Similarity index is",similarity_index)
#
mel = Mel()
# audioarray_to_mp3(mel.image_to_audio(image), "audio/output.mp3")
# song_array_1, sr = librosa.load("audio\output.mp3", sr=22050)
# song_array_1 = song_array_1[:sr*5]
input_songs_array = []
if song1_name != "None":
song_array_1, sr = librosa.load(f"input_songs/{song1_name}.mp3", sr=22050)
input_songs_array.append(song_array_1)
# song_array_1, sr = librosa.load(f"input_songs/{song1_name}.mp3", sr=22050)
# song_array_1 = song_array_1[:sr*5]
if song2_name != "None":
song_array_2, sr = librosa.load(f"input_songs/{song2_name}.mp3", sr=22050)
input_songs_array.append(song_array_2)
# song_array_2, sr = librosa.load(f"input_songs/{song2_name}.mp3", sr=22050)
# song_array_2 = song_array_2[:sr*5]
if song3_name != "None":
song_array_3, sr = librosa.load(f"input_songs/{song3_name}.mp3", sr=22050)
input_songs_array.append(song_array_3)
# song_array_3, sr = librosa.load(f"input_songs/{song3_name}.mp3", sr=22050)
# song_array_3 = song_array_3[:sr*5]
mage, audio = generate_songs(input_songs_array, similarity=similarity_index, quality=200)
mage.save("audio/thumbnail.png")
audioarray_to_mp3_highdb(audio,"audio/generated_song.mp3")
# if i==3:
# shutil.copy2("aidio/nvg.mp3", "audio/generated_song.mp3")
print("Python script executed successfully")
if __name__ == "__main__":
main()