changes
Browse files- generation_utilities.py +9 -6
generation_utilities.py
CHANGED
@@ -12,6 +12,7 @@ model_name = ["SAint7579/orpheus_ldm_model_v1-0", "teticio/audio-diffusion-ddim-
|
|
12 |
|
13 |
audio_diffusion_v0 = AudioDiffusionPipeline.from_pretrained("teticio/latent-audio-diffusion-256").to(device)
|
14 |
audio_diffusion_v1 = AudioDiffusionPipeline.from_pretrained("SAint7579/orpheus_ldm_model_v1-0").to(device)
|
|
|
15 |
ddim = AudioDiffusionPipeline.from_pretrained("teticio/audio-diffusion-ddim-256").to(device)
|
16 |
|
17 |
### Add numpy docstring to generate_from_music
|
@@ -166,12 +167,14 @@ def generate_songs(conditioning_songs, similarity=0.9, quality=500, merging_qual
|
|
166 |
# start = np.random.randint(0, len(merged) - 5 * sample_rate)
|
167 |
# merged = merged[start:start + 5 * sample_rate]
|
168 |
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
|
|
|
|
175 |
print("Generating song...")
|
176 |
## quality = X - similarity*X
|
177 |
total_steps = min([1000, int(quality/(1-similarity))])
|
|
|
12 |
|
13 |
audio_diffusion_v0 = AudioDiffusionPipeline.from_pretrained("teticio/latent-audio-diffusion-256").to(device)
|
14 |
audio_diffusion_v1 = AudioDiffusionPipeline.from_pretrained("SAint7579/orpheus_ldm_model_v1-0").to(device)
|
15 |
+
audio_diffusion_v2 = AudioDiffusionPipeline.from_pretrained("SAint7579/orpheus_ldm_model_v2-0").to(device)
|
16 |
ddim = AudioDiffusionPipeline.from_pretrained("teticio/audio-diffusion-ddim-256").to(device)
|
17 |
|
18 |
### Add numpy docstring to generate_from_music
|
|
|
167 |
# start = np.random.randint(0, len(merged) - 5 * sample_rate)
|
168 |
# merged = merged[start:start + 5 * sample_rate]
|
169 |
|
170 |
+
|
171 |
+
|
172 |
+
diffuser, model_name = random.choice([
|
173 |
+
(audio_diffusion_v0, "v0"),
|
174 |
+
(audio_diffusion_v1, "v1"),
|
175 |
+
(audio_diffusion_v2, "v2")
|
176 |
+
])
|
177 |
+
|
178 |
print("Generating song...")
|
179 |
## quality = X - similarity*X
|
180 |
total_steps = min([1000, int(quality/(1-similarity))])
|