{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import numpy as np" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "import glob\n", "import matplotlib.pyplot as plt " ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [], "source": [ "songs = glob.glob(\"DataSet/srija/*.wav\")\n", "ratings = [s.split(\"_\")[-1].split(\".\")[0] for s in songs]\n", "ratings = np.array(ratings, dtype=int)\n", "version = [s.split(\"_\")[1][-2:] for s in songs]" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "rr =pd.DataFrame({\"rating\": ratings, \"version\": version})\n", "\n", "# plt = rr.groupby([\"version\"])[\"ratings\"].mean().plot(kind='bar', stacked=True)\n" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " | rating | \n", "
---|---|
version | \n", "\n", " |
v0 | \n", "4.740741 | \n", "
v1 | \n", "4.703704 | \n", "