import tiktoken from langchain_text_splitters import CharacterTextSplitter from langchain_chroma import Chroma from langchain_community.embeddings import HuggingFaceBgeEmbeddings from langchain.document_loaders import PyMuPDFLoader,Docx2txtLoader from transformers import pipeline from app_config import VECTOR_MAX_TOKENS, VECTORS_TOKEN_OVERLAP_SIZE from langchain.docstore.document import Document from dotenv import load_dotenv from pathlib import Path import os env_path = Path('.') / '.env' load_dotenv(dotenv_path=env_path) tokenizer = tiktoken.get_encoding('cl100k_base') # create the length function def tiktoken_len(text): tokens = tokenizer.encode( text, disallowed_special=() ) return len(tokens) def get_vectorstore_with_doc_from_pdf(pdf_path): model_name = "BAAI/bge-small-en" model_kwargs = {"device": "cpu"} encode_kwargs = {"normalize_embeddings": True} hf = HuggingFaceBgeEmbeddings( model_name=model_name, model_kwargs=model_kwargs, encode_kwargs=encode_kwargs ) loader = PyMuPDFLoader(pdf_path) documents = loader.load() print(len(documents)) all_splits = [doc.page_content for doc in documents] vectorstore = Chroma.from_texts(texts=all_splits, embedding=hf) return vectorstore def get_vectorstore_with_doc_from_word(word_path): model_name = "BAAI/bge-small-en" model_kwargs = {"device": "cpu"} encode_kwargs = {"normalize_embeddings": True} hf = HuggingFaceBgeEmbeddings( model_name=model_name, model_kwargs=model_kwargs, encode_kwargs=encode_kwargs ) loader = Docx2txtLoader(word_path) documents = loader.load() text_splitter = CharacterTextSplitter( separator="Page :", ) # all_splits = text_splitter.split_text(data) print(len(documents)) print("all splits ........................") all_splits = text_splitter.split_text(documents[0].page_content) print(len(all_splits)) vectorstore = Chroma.from_texts(texts=all_splits, embedding=hf) return vectorstore