Finance / app.py
baconnier's picture
Update app.py
2b8851d verified
raw
history blame
6.5 kB
import spaces
import json
import subprocess
import gradio as gr
from huggingface_hub import hf_hub_download
subprocess.run('pip install llama-cpp-python==0.2.75 --extra-index-url https://abetlen.github.io/llama-cpp-python/whl/cu124', shell=True)
subprocess.run('pip install llama-cpp-agent==0.2.10', shell=True)
#hf_hub_download(repo_id="baconnier/Finance_dolphin-2.9.1-yi-1.5-34b_GGUF", filename="Finance_dolphin-2.9.1-yi-1.5-34b-Q8_0.gguf", local_dir = "./models")
hf_hub_download(repo_id="baconnier/Finance_dolphin-2.9.1-yi-1.5-9b_GGUF", filename="Finance_dolphin-2.9.1-yi-1.5-9b_Q8_0.gguf", local_dir = "./models")
#hf_hub_download(repo_id="baconnier/finance_dolphin_orpo_llama3_8B_r64_51K_GGUF", filename="finance_dolphin_orpo_llama3_8B_r64_51K_GGUF-unsloth.Q8_0.gguf", local_dir = "./models")
#hf_hub_download(repo_id="crusoeai/dolphin-2.9.1-llama-3-8b-GGUF", filename="dolphin-2.9.1-llama-3-8b.Q6_K.gguf", local_dir = "./models")
css = """
.message-row {
justify-content: space-evenly !important;
}
.message-bubble-border {
border-radius: 6px !important;
}
.dark.message-bubble-border {
border-color: #21293b !important;
}
.dark.user {
background: #0a1120 !important;
}
.dark.assistant {
background: transparent !important;
}
"""
PLACEHOLDER = """
<div class="message-bubble-border" style="display:flex; max-width: 600px; border-radius: 8px; box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1); backdrop-filter: blur(10px);">
<figure style="margin: 0;">
<img src="https://huggingface.co/spaces/baconnier/Finance/resolve/main/banker.jpg" style="width: 100%; height: 100%; border-radius: 8px;">
</figure>
<div style="padding: .5rem 1.5rem;">
<img src="https://huggingface.co/spaces/baconnier/Finance/resolve/main/banker_plus.jpg" style="width: 100%; height: 10%; border-radius: 8px;">
<h2 style="text-align: left; font-size: 1.5rem; font-weight: 700; margin-bottom: 0.5rem;"> </h2>
<p style="text-align: left; font-size: 16px; line-height: 1.5; margin-bottom: 15px;">Banker++ is trained to act like a Senior Banker. Use this template for learning purposes only. Also a Real time version exist</p>
</div>
</div>
"""
@spaces.GPU(duration=120)
def respond(
message,
history: list[tuple[str, str]],
max_tokens,
temperature,
top_p,
top_k,
repeat_penalty,
model,
):
from llama_cpp import Llama
from llama_cpp_agent import LlamaCppAgent
from llama_cpp_agent import MessagesFormatterType
from llama_cpp_agent.providers import LlamaCppPythonProvider
from llama_cpp_agent.chat_history import BasicChatHistory
from llama_cpp_agent.chat_history.messages import Roles
print(message)
print(history)
llm = Llama(
model_path=f"models/{model}",
flash_attn=True,
n_threads=40,
n_gpu_layers=81,
n_batch=1024,
n_ctx=8192,
)
provider = LlamaCppPythonProvider(llm)
agent = LlamaCppAgent(
provider,
system_prompt="You are Alan, a financial analyst.",
predefined_messages_formatter_type=MessagesFormatterType.CHATML,
debug_output=True
)
settings = provider.get_provider_default_settings()
settings.temperature = temperature
settings.top_k = top_k
settings.top_p = top_p
settings.max_tokens = max_tokens
settings.repeat_penalty = repeat_penalty
settings.stream = True
messages = BasicChatHistory()
for msn in history:
user = {
'role': Roles.user,
'content': msn[0]
}
assistant = {
'role': Roles.assistant,
'content': msn[1]
}
messages.add_message(user)
messages.add_message(assistant)
stream = agent.get_chat_response(message, llm_sampling_settings=settings, chat_history=messages, returns_streaming_generator=True, print_output=False)
outputs = ""
for output in stream:
outputs += output
yield outputs
examples = [
["What is the difference between a CDS and a CDO, which one is better if inflation raise."],
["According to the latest news, is an asset swap better than the long underlying ?"],
["Give me the latest ESG activity of banks in 2023"],
["Summarize the latest federal reserve's beige book"],
["Based on the recent market updates and economic trends, give me some investment advice and insights. Justify each advice."],
["Based only on the last two weeks news, tell me what are the most important economics and financial news in developed markets (European and US market)"],
]
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Slider(minimum=1, maximum=8192, value=8192, step=1, label="Max tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p",
),
gr.Slider(
minimum=0,
maximum=100,
value=40,
step=1,
label="Top-k",
),
gr.Slider(
minimum=0.0,
maximum=2.0,
value=1.1,
step=0.1,
label="Repetition penalty",
),
gr.Dropdown(["Finance_dolphin-2.9.1-yi-1.5-9b_Q8_0.gguf",'Finance_dolphin-2.9.1-yi-1.5-34b-Q8_0.gguf'], value="Finance_dolphin-2.9.1-yi-1.5-9b_Q8_0.gguf", label="Model"),
],
theme=gr.themes.Soft(primary_hue="indigo", secondary_hue="blue", neutral_hue="gray",font=[gr.themes.GoogleFont("Exo"), "ui-sans-serif", "system-ui", "sans-serif"]).set(
body_background_fill_dark="#0f172a",
block_background_fill_dark="#0f172a",
block_border_width="1px",
block_title_background_fill_dark="#070d1b",
#input_background_fill_dark="#0c1425",
button_secondary_background_fill_dark="#070d1b",
border_color_primary_dark="#21293b",
background_fill_secondary_dark="#0f172a",
color_accent_soft_dark="transparent"
),
examples=examples,
examples_per_page=3,
css=css,
retry_btn="Retry",
undo_btn="Undo",
clear_btn="Clear",
submit_btn="Send",
description="BANKER++ is fine-tuned on Cognitive Computation: Chat Dolphin 🐬 2.9.1-yi-1.5-34b",
chatbot=gr.Chatbot(scale=1, placeholder=PLACEHOLDER)
)
if __name__ == "__main__":
demo.launch()