File size: 6,010 Bytes
4d1ebf3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
"""
    BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation and Alignment, CVPR 2022
"""
import torch
import torch.nn as nn

from mmcv.ops import ModulatedDeformConv2d, modulated_deform_conv2d
from mmengine.model import constant_init

from model.modules.flow_comp import flow_warp


class SecondOrderDeformableAlignment(ModulatedDeformConv2d):
    """Second-order deformable alignment module."""
    def __init__(self, *args, **kwargs):
        self.max_residue_magnitude = kwargs.pop('max_residue_magnitude', 10)

        super(SecondOrderDeformableAlignment, self).__init__(*args, **kwargs)

        self.conv_offset = nn.Sequential(
            nn.Conv2d(3 * self.out_channels + 4, self.out_channels, 3, 1, 1),
            nn.LeakyReLU(negative_slope=0.1, inplace=True),
            nn.Conv2d(self.out_channels, self.out_channels, 3, 1, 1),
            nn.LeakyReLU(negative_slope=0.1, inplace=True),
            nn.Conv2d(self.out_channels, self.out_channels, 3, 1, 1),
            nn.LeakyReLU(negative_slope=0.1, inplace=True),
            nn.Conv2d(self.out_channels, 27 * self.deform_groups, 3, 1, 1),
        )

        self.init_offset()

    def init_offset(self):
        constant_init(self.conv_offset[-1], val=0, bias=0)

    def forward(self, x, extra_feat, flow_1, flow_2):
        extra_feat = torch.cat([extra_feat, flow_1, flow_2], dim=1)
        out = self.conv_offset(extra_feat)
        o1, o2, mask = torch.chunk(out, 3, dim=1)

        # offset
        offset = self.max_residue_magnitude * torch.tanh(
            torch.cat((o1, o2), dim=1))
        offset_1, offset_2 = torch.chunk(offset, 2, dim=1)
        offset_1 = offset_1 + flow_1.flip(1).repeat(1,
                                                    offset_1.size(1) // 2, 1,
                                                    1)
        offset_2 = offset_2 + flow_2.flip(1).repeat(1,
                                                    offset_2.size(1) // 2, 1,
                                                    1)
        offset = torch.cat([offset_1, offset_2], dim=1)

        # mask
        mask = torch.sigmoid(mask)

        return modulated_deform_conv2d(x, offset, mask, self.weight, self.bias,
                                       self.stride, self.padding,
                                       self.dilation, self.groups,
                                       self.deform_groups)


class BidirectionalPropagation(nn.Module):
    def __init__(self, channel):
        super(BidirectionalPropagation, self).__init__()
        modules = ['backward_', 'forward_']
        self.deform_align = nn.ModuleDict()
        self.backbone = nn.ModuleDict()
        self.channel = channel

        for i, module in enumerate(modules):
            self.deform_align[module] = SecondOrderDeformableAlignment(
                2 * channel, channel, 3, padding=1, deform_groups=16)

            self.backbone[module] = nn.Sequential(
                nn.Conv2d((2 + i) * channel, channel, 3, 1, 1),
                nn.LeakyReLU(negative_slope=0.1, inplace=True),
                nn.Conv2d(channel, channel, 3, 1, 1),
            )

        self.fusion = nn.Conv2d(2 * channel, channel, 1, 1, 0)

    def forward(self, x, flows_backward, flows_forward):
        """
        x shape : [b, t, c, h, w]
        return [b, t, c, h, w]
        """
        b, t, c, h, w = x.shape
        feats = {}
        feats['spatial'] = [x[:, i, :, :, :] for i in range(0, t)]

        for module_name in ['backward_', 'forward_']:

            feats[module_name] = []

            frame_idx = range(0, t)
            flow_idx = range(-1, t - 1)
            mapping_idx = list(range(0, len(feats['spatial'])))
            mapping_idx += mapping_idx[::-1]

            if 'backward' in module_name:
                frame_idx = frame_idx[::-1]
                flows = flows_backward
            else:
                flows = flows_forward

            feat_prop = x.new_zeros(b, self.channel, h, w)
            for i, idx in enumerate(frame_idx):
                feat_current = feats['spatial'][mapping_idx[idx]]

                if i > 0:
                    flow_n1 = flows[:, flow_idx[i], :, :, :]
                    cond_n1 = flow_warp(feat_prop, flow_n1.permute(0, 2, 3, 1))

                    # initialize second-order features
                    feat_n2 = torch.zeros_like(feat_prop)
                    flow_n2 = torch.zeros_like(flow_n1)
                    cond_n2 = torch.zeros_like(cond_n1)
                    if i > 1:
                        feat_n2 = feats[module_name][-2]
                        flow_n2 = flows[:, flow_idx[i - 1], :, :, :]
                        flow_n2 = flow_n1 + flow_warp(
                            flow_n2, flow_n1.permute(0, 2, 3, 1))
                        cond_n2 = flow_warp(feat_n2,
                                            flow_n2.permute(0, 2, 3, 1))

                    cond = torch.cat([cond_n1, feat_current, cond_n2], dim=1)
                    feat_prop = torch.cat([feat_prop, feat_n2], dim=1)
                    feat_prop = self.deform_align[module_name](feat_prop, cond,
                                                               flow_n1,
                                                               flow_n2)

                feat = [feat_current] + [
                    feats[k][idx]
                    for k in feats if k not in ['spatial', module_name]
                ] + [feat_prop]

                feat = torch.cat(feat, dim=1)
                feat_prop = feat_prop + self.backbone[module_name](feat)
                feats[module_name].append(feat_prop)

            if 'backward' in module_name:
                feats[module_name] = feats[module_name][::-1]

        outputs = []
        for i in range(0, t):
            align_feats = [feats[k].pop(0) for k in feats if k != 'spatial']
            align_feats = torch.cat(align_feats, dim=1)
            outputs.append(self.fusion(align_feats))

        return torch.stack(outputs, dim=1) + x