Spaces:
Runtime error
Runtime error
File size: 12,357 Bytes
4d1ebf3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
"""
Spectral Normalization from https://arxiv.org/abs/1802.05957
"""
import torch
from torch.nn.functional import normalize
class SpectralNorm(object):
# Invariant before and after each forward call:
# u = normalize(W @ v)
# NB: At initialization, this invariant is not enforced
_version = 1
# At version 1:
# made `W` not a buffer,
# added `v` as a buffer, and
# made eval mode use `W = u @ W_orig @ v` rather than the stored `W`.
def __init__(self, name='weight', n_power_iterations=1, dim=0, eps=1e-12):
self.name = name
self.dim = dim
if n_power_iterations <= 0:
raise ValueError(
'Expected n_power_iterations to be positive, but '
'got n_power_iterations={}'.format(n_power_iterations))
self.n_power_iterations = n_power_iterations
self.eps = eps
def reshape_weight_to_matrix(self, weight):
weight_mat = weight
if self.dim != 0:
# permute dim to front
weight_mat = weight_mat.permute(
self.dim,
*[d for d in range(weight_mat.dim()) if d != self.dim])
height = weight_mat.size(0)
return weight_mat.reshape(height, -1)
def compute_weight(self, module, do_power_iteration):
# NB: If `do_power_iteration` is set, the `u` and `v` vectors are
# updated in power iteration **in-place**. This is very important
# because in `DataParallel` forward, the vectors (being buffers) are
# broadcast from the parallelized module to each module replica,
# which is a new module object created on the fly. And each replica
# runs its own spectral norm power iteration. So simply assigning
# the updated vectors to the module this function runs on will cause
# the update to be lost forever. And the next time the parallelized
# module is replicated, the same randomly initialized vectors are
# broadcast and used!
#
# Therefore, to make the change propagate back, we rely on two
# important behaviors (also enforced via tests):
# 1. `DataParallel` doesn't clone storage if the broadcast tensor
# is already on correct device; and it makes sure that the
# parallelized module is already on `device[0]`.
# 2. If the out tensor in `out=` kwarg has correct shape, it will
# just fill in the values.
# Therefore, since the same power iteration is performed on all
# devices, simply updating the tensors in-place will make sure that
# the module replica on `device[0]` will update the _u vector on the
# parallized module (by shared storage).
#
# However, after we update `u` and `v` in-place, we need to **clone**
# them before using them to normalize the weight. This is to support
# backproping through two forward passes, e.g., the common pattern in
# GAN training: loss = D(real) - D(fake). Otherwise, engine will
# complain that variables needed to do backward for the first forward
# (i.e., the `u` and `v` vectors) are changed in the second forward.
weight = getattr(module, self.name + '_orig')
u = getattr(module, self.name + '_u')
v = getattr(module, self.name + '_v')
weight_mat = self.reshape_weight_to_matrix(weight)
if do_power_iteration:
with torch.no_grad():
for _ in range(self.n_power_iterations):
# Spectral norm of weight equals to `u^T W v`, where `u` and `v`
# are the first left and right singular vectors.
# This power iteration produces approximations of `u` and `v`.
v = normalize(torch.mv(weight_mat.t(), u),
dim=0,
eps=self.eps,
out=v)
u = normalize(torch.mv(weight_mat, v),
dim=0,
eps=self.eps,
out=u)
if self.n_power_iterations > 0:
# See above on why we need to clone
u = u.clone()
v = v.clone()
sigma = torch.dot(u, torch.mv(weight_mat, v))
weight = weight / sigma
return weight
def remove(self, module):
with torch.no_grad():
weight = self.compute_weight(module, do_power_iteration=False)
delattr(module, self.name)
delattr(module, self.name + '_u')
delattr(module, self.name + '_v')
delattr(module, self.name + '_orig')
module.register_parameter(self.name,
torch.nn.Parameter(weight.detach()))
def __call__(self, module, inputs):
setattr(
module, self.name,
self.compute_weight(module, do_power_iteration=module.training))
def _solve_v_and_rescale(self, weight_mat, u, target_sigma):
# Tries to returns a vector `v` s.t. `u = normalize(W @ v)`
# (the invariant at top of this class) and `u @ W @ v = sigma`.
# This uses pinverse in case W^T W is not invertible.
v = torch.chain_matmul(weight_mat.t().mm(weight_mat).pinverse(),
weight_mat.t(), u.unsqueeze(1)).squeeze(1)
return v.mul_(target_sigma / torch.dot(u, torch.mv(weight_mat, v)))
@staticmethod
def apply(module, name, n_power_iterations, dim, eps):
for k, hook in module._forward_pre_hooks.items():
if isinstance(hook, SpectralNorm) and hook.name == name:
raise RuntimeError(
"Cannot register two spectral_norm hooks on "
"the same parameter {}".format(name))
fn = SpectralNorm(name, n_power_iterations, dim, eps)
weight = module._parameters[name]
with torch.no_grad():
weight_mat = fn.reshape_weight_to_matrix(weight)
h, w = weight_mat.size()
# randomly initialize `u` and `v`
u = normalize(weight.new_empty(h).normal_(0, 1), dim=0, eps=fn.eps)
v = normalize(weight.new_empty(w).normal_(0, 1), dim=0, eps=fn.eps)
delattr(module, fn.name)
module.register_parameter(fn.name + "_orig", weight)
# We still need to assign weight back as fn.name because all sorts of
# things may assume that it exists, e.g., when initializing weights.
# However, we can't directly assign as it could be an nn.Parameter and
# gets added as a parameter. Instead, we register weight.data as a plain
# attribute.
setattr(module, fn.name, weight.data)
module.register_buffer(fn.name + "_u", u)
module.register_buffer(fn.name + "_v", v)
module.register_forward_pre_hook(fn)
module._register_state_dict_hook(SpectralNormStateDictHook(fn))
module._register_load_state_dict_pre_hook(
SpectralNormLoadStateDictPreHook(fn))
return fn
# This is a top level class because Py2 pickle doesn't like inner class nor an
# instancemethod.
class SpectralNormLoadStateDictPreHook(object):
# See docstring of SpectralNorm._version on the changes to spectral_norm.
def __init__(self, fn):
self.fn = fn
# For state_dict with version None, (assuming that it has gone through at
# least one training forward), we have
#
# u = normalize(W_orig @ v)
# W = W_orig / sigma, where sigma = u @ W_orig @ v
#
# To compute `v`, we solve `W_orig @ x = u`, and let
# v = x / (u @ W_orig @ x) * (W / W_orig).
def __call__(self, state_dict, prefix, local_metadata, strict,
missing_keys, unexpected_keys, error_msgs):
fn = self.fn
version = local_metadata.get('spectral_norm',
{}).get(fn.name + '.version', None)
if version is None or version < 1:
with torch.no_grad():
weight_orig = state_dict[prefix + fn.name + '_orig']
# weight = state_dict.pop(prefix + fn.name)
# sigma = (weight_orig / weight).mean()
weight_mat = fn.reshape_weight_to_matrix(weight_orig)
u = state_dict[prefix + fn.name + '_u']
# v = fn._solve_v_and_rescale(weight_mat, u, sigma)
# state_dict[prefix + fn.name + '_v'] = v
# This is a top level class because Py2 pickle doesn't like inner class nor an
# instancemethod.
class SpectralNormStateDictHook(object):
# See docstring of SpectralNorm._version on the changes to spectral_norm.
def __init__(self, fn):
self.fn = fn
def __call__(self, module, state_dict, prefix, local_metadata):
if 'spectral_norm' not in local_metadata:
local_metadata['spectral_norm'] = {}
key = self.fn.name + '.version'
if key in local_metadata['spectral_norm']:
raise RuntimeError(
"Unexpected key in metadata['spectral_norm']: {}".format(key))
local_metadata['spectral_norm'][key] = self.fn._version
def spectral_norm(module,
name='weight',
n_power_iterations=1,
eps=1e-12,
dim=None):
r"""Applies spectral normalization to a parameter in the given module.
.. math::
\mathbf{W}_{SN} = \dfrac{\mathbf{W}}{\sigma(\mathbf{W})},
\sigma(\mathbf{W}) = \max_{\mathbf{h}: \mathbf{h} \ne 0} \dfrac{\|\mathbf{W} \mathbf{h}\|_2}{\|\mathbf{h}\|_2}
Spectral normalization stabilizes the training of discriminators (critics)
in Generative Adversarial Networks (GANs) by rescaling the weight tensor
with spectral norm :math:`\sigma` of the weight matrix calculated using
power iteration method. If the dimension of the weight tensor is greater
than 2, it is reshaped to 2D in power iteration method to get spectral
norm. This is implemented via a hook that calculates spectral norm and
rescales weight before every :meth:`~Module.forward` call.
See `Spectral Normalization for Generative Adversarial Networks`_ .
.. _`Spectral Normalization for Generative Adversarial Networks`: https://arxiv.org/abs/1802.05957
Args:
module (nn.Module): containing module
name (str, optional): name of weight parameter
n_power_iterations (int, optional): number of power iterations to
calculate spectral norm
eps (float, optional): epsilon for numerical stability in
calculating norms
dim (int, optional): dimension corresponding to number of outputs,
the default is ``0``, except for modules that are instances of
ConvTranspose{1,2,3}d, when it is ``1``
Returns:
The original module with the spectral norm hook
Example::
>>> m = spectral_norm(nn.Linear(20, 40))
>>> m
Linear(in_features=20, out_features=40, bias=True)
>>> m.weight_u.size()
torch.Size([40])
"""
if dim is None:
if isinstance(module,
(torch.nn.ConvTranspose1d, torch.nn.ConvTranspose2d,
torch.nn.ConvTranspose3d)):
dim = 1
else:
dim = 0
SpectralNorm.apply(module, name, n_power_iterations, dim, eps)
return module
def remove_spectral_norm(module, name='weight'):
r"""Removes the spectral normalization reparameterization from a module.
Args:
module (Module): containing module
name (str, optional): name of weight parameter
Example:
>>> m = spectral_norm(nn.Linear(40, 10))
>>> remove_spectral_norm(m)
"""
for k, hook in module._forward_pre_hooks.items():
if isinstance(hook, SpectralNorm) and hook.name == name:
hook.remove(module)
del module._forward_pre_hooks[k]
return module
raise ValueError("spectral_norm of '{}' not found in {}".format(
name, module))
def use_spectral_norm(module, use_sn=False):
if use_sn:
return spectral_norm(module)
return module |