Spaces:
Runtime error
Runtime error
File size: 25,447 Bytes
4d1ebf3 bb879e5 4d1ebf3 53a8438 bb879e5 53a8438 7e7cb51 4d1ebf3 bb879e5 4d1ebf3 bb879e5 4d1ebf3 bb879e5 4d1ebf3 05187ec 4d1ebf3 bb879e5 05187ec bb879e5 4d1ebf3 bb879e5 4d1ebf3 05187ec 4d1ebf3 bb879e5 4d1ebf3 05187ec bb879e5 05187ec bb879e5 05187ec 4d1ebf3 6738b38 4d1ebf3 05187ec 4d1ebf3 05187ec 53a8438 4d1ebf3 05187ec 4d1ebf3 53a8438 4d1ebf3 05187ec 4d1ebf3 bb879e5 4d1ebf3 05187ec 4d1ebf3 bb879e5 53a8438 bb879e5 4d1ebf3 05187ec 4d1ebf3 53a8438 4d1ebf3 53a8438 4d1ebf3 bb879e5 53a8438 4d1ebf3 53a8438 4d1ebf3 bb879e5 5da584d 4d1ebf3 bb879e5 4d1ebf3 53a8438 4d1ebf3 05187ec bb879e5 05187ec 4d1ebf3 bb879e5 4d1ebf3 53a8438 4d1ebf3 05187ec bb879e5 53a8438 bb879e5 4d1ebf3 05187ec 4d1ebf3 05187ec 4d1ebf3 05187ec 4d1ebf3 05187ec 4d1ebf3 05187ec 4d1ebf3 05187ec bb879e5 4d1ebf3 05187ec bb879e5 4d1ebf3 05187ec bb879e5 4d1ebf3 05187ec 4d1ebf3 05187ec 4d1ebf3 05187ec 4d1ebf3 bb879e5 05187ec 4d1ebf3 bb879e5 4d1ebf3 05187ec 4d1ebf3 bb879e5 4d1ebf3 05187ec bb879e5 05187ec 4d1ebf3 05187ec bb879e5 4d1ebf3 05187ec bb879e5 4d1ebf3 53a8438 4d1ebf3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 |
import gradio as gr
import argparse
import gdown
import cv2
import numpy as np
import os
import sys
sys.path.append(sys.path[0]+"/tracker")
sys.path.append(sys.path[0]+"/tracker/model")
from track_anything import TrackingAnything
from track_anything import parse_augment
import requests
import json
import torchvision
import torch
from tools.interact_tools import SamControler
from tracker.base_tracker import BaseTracker
from tools.painter import mask_painter
try:
from mmcv.cnn import ConvModule
except:
os.system("mim install mmcv")
# download checkpoints
def download_checkpoint(url, folder, filename):
os.makedirs(folder, exist_ok=True)
filepath = os.path.join(folder, filename)
if not os.path.exists(filepath):
print("download checkpoints ......")
response = requests.get(url, stream=True)
with open(filepath, "wb") as f:
for chunk in response.iter_content(chunk_size=8192):
if chunk:
f.write(chunk)
print("download successfully!")
return filepath
def download_checkpoint_from_google_drive(file_id, folder, filename):
os.makedirs(folder, exist_ok=True)
filepath = os.path.join(folder, filename)
if not os.path.exists(filepath):
print("Downloading checkpoints from Google Drive... tips: If you cannot see the progress bar, please try to download it manuall \
and put it in the checkpointes directory. E2FGVI-HQ-CVPR22.pth: https://github.com/MCG-NKU/E2FGVI(E2FGVI-HQ model)")
url = f"https://drive.google.com/uc?id={file_id}"
gdown.download(url, filepath, quiet=False)
print("Downloaded successfully!")
return filepath
# convert points input to prompt state
def get_prompt(click_state, click_input):
inputs = json.loads(click_input)
points = click_state[0]
labels = click_state[1]
for input in inputs:
points.append(input[:2])
labels.append(input[2])
click_state[0] = points
click_state[1] = labels
prompt = {
"prompt_type":["click"],
"input_point":click_state[0],
"input_label":click_state[1],
"multimask_output":"True",
}
return prompt
# extract frames from upload video
def get_frames_from_video(video_input, video_state):
"""
Args:
video_path:str
timestamp:float64
Return
[[0:nearest_frame], [nearest_frame:], nearest_frame]
"""
video_path = video_input
frames = []
try:
cap = cv2.VideoCapture(video_path)
fps = cap.get(cv2.CAP_PROP_FPS)
while cap.isOpened():
ret, frame = cap.read()
if ret == True:
frames.append(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
else:
break
except (OSError, TypeError, ValueError, KeyError, SyntaxError) as e:
print("read_frame_source:{} error. {}\n".format(video_path, str(e)))
image_size = (frames[0].shape[0],frames[0].shape[1])
# initialize video_state
video_state = {
"video_name": os.path.split(video_path)[-1],
"origin_images": frames,
"painted_images": frames.copy(),
"masks": [np.zeros((frames[0].shape[0],frames[0].shape[1]), np.uint8)]*len(frames),
"logits": [None]*len(frames),
"select_frame_number": 0,
"fps": fps
}
video_info = "Video Name: {}, FPS: {}, Total Frames: {}, Image Size:{}".format(video_state["video_name"], video_state["fps"], len(frames), image_size)
model.samcontroler.sam_controler.reset_image()
model.samcontroler.sam_controler.set_image(video_state["origin_images"][0])
return video_state, video_info, video_state["origin_images"][0], gr.update(visible=True, maximum=len(frames), value=1), gr.update(visible=True, maximum=len(frames), value=len(frames)), \
gr.update(visible=True), gr.update(visible=True), \
gr.update(visible=True), gr.update(visible=True), \
gr.update(visible=True), gr.update(visible=True), \
gr.update(visible=True), gr.update(visible=True), \
gr.update(visible=True), gr.update(visible=True)
def run_example(example):
return video_input
# get the select frame from gradio slider
def select_template(image_selection_slider, video_state, interactive_state):
# images = video_state[1]
image_selection_slider -= 1
video_state["select_frame_number"] = image_selection_slider
# once select a new template frame, set the image in sam
model.samcontroler.sam_controler.reset_image()
model.samcontroler.sam_controler.set_image(video_state["origin_images"][image_selection_slider])
# update the masks when select a new template frame
# if video_state["masks"][image_selection_slider] is not None:
# video_state["painted_images"][image_selection_slider] = mask_painter(video_state["origin_images"][image_selection_slider], video_state["masks"][image_selection_slider])
return video_state["painted_images"][image_selection_slider], video_state, interactive_state
# set the tracking end frame
def get_end_number(track_pause_number_slider, video_state, interactive_state):
interactive_state["track_end_number"] = track_pause_number_slider
return video_state["painted_images"][track_pause_number_slider],interactive_state
def get_resize_ratio(resize_ratio_slider, interactive_state):
interactive_state["resize_ratio"] = resize_ratio_slider
return interactive_state
# use sam to get the mask
def sam_refine(video_state, point_prompt, click_state, interactive_state, evt:gr.SelectData):
"""
Args:
template_frame: PIL.Image
point_prompt: flag for positive or negative button click
click_state: [[points], [labels]]
"""
if point_prompt == "Positive":
coordinate = "[[{},{},1]]".format(evt.index[0], evt.index[1])
interactive_state["positive_click_times"] += 1
else:
coordinate = "[[{},{},0]]".format(evt.index[0], evt.index[1])
interactive_state["negative_click_times"] += 1
# prompt for sam model
model.samcontroler.sam_controler.reset_image()
model.samcontroler.sam_controler.set_image(video_state["origin_images"][video_state["select_frame_number"]])
prompt = get_prompt(click_state=click_state, click_input=coordinate)
mask, logit, painted_image = model.first_frame_click(
image=video_state["origin_images"][video_state["select_frame_number"]],
points=np.array(prompt["input_point"]),
labels=np.array(prompt["input_label"]),
multimask=prompt["multimask_output"],
)
video_state["masks"][video_state["select_frame_number"]] = mask
video_state["logits"][video_state["select_frame_number"]] = logit
video_state["painted_images"][video_state["select_frame_number"]] = painted_image
return painted_image, video_state, interactive_state
def add_multi_mask(video_state, interactive_state, mask_dropdown):
mask = video_state["masks"][video_state["select_frame_number"]]
interactive_state["multi_mask"]["masks"].append(mask)
interactive_state["multi_mask"]["mask_names"].append("mask_{:03d}".format(len(interactive_state["multi_mask"]["masks"])))
mask_dropdown.append("mask_{:03d}".format(len(interactive_state["multi_mask"]["masks"])))
select_frame = show_mask(video_state, interactive_state, mask_dropdown)
return interactive_state, gr.update(choices=interactive_state["multi_mask"]["mask_names"], value=mask_dropdown), select_frame, [[],[]]
def clear_click(video_state, click_state):
click_state = [[],[]]
template_frame = video_state["origin_images"][video_state["select_frame_number"]]
return template_frame, click_state
def remove_multi_mask(interactive_state):
interactive_state["multi_mask"]["mask_names"]= []
interactive_state["multi_mask"]["masks"] = []
return interactive_state
def show_mask(video_state, interactive_state, mask_dropdown):
mask_dropdown.sort()
select_frame = video_state["origin_images"][video_state["select_frame_number"]]
for i in range(len(mask_dropdown)):
mask_number = int(mask_dropdown[i].split("_")[1]) - 1
mask = interactive_state["multi_mask"]["masks"][mask_number]
select_frame = mask_painter(select_frame, mask.astype('uint8'), mask_color=mask_number+2)
return select_frame
# tracking vos
def vos_tracking_video(video_state, interactive_state, mask_dropdown):
model.xmem.clear_memory()
if interactive_state["track_end_number"]:
following_frames = video_state["origin_images"][video_state["select_frame_number"]:interactive_state["track_end_number"]]
else:
following_frames = video_state["origin_images"][video_state["select_frame_number"]:]
if interactive_state["multi_mask"]["masks"]:
if len(mask_dropdown) == 0:
mask_dropdown = ["mask_001"]
mask_dropdown.sort()
template_mask = interactive_state["multi_mask"]["masks"][int(mask_dropdown[0].split("_")[1]) - 1] * (int(mask_dropdown[0].split("_")[1]))
for i in range(1,len(mask_dropdown)):
mask_number = int(mask_dropdown[i].split("_")[1]) - 1
template_mask = np.clip(template_mask+interactive_state["multi_mask"]["masks"][mask_number]*(mask_number+1), 0, mask_number+1)
video_state["masks"][video_state["select_frame_number"]]= template_mask
else:
template_mask = video_state["masks"][video_state["select_frame_number"]]
fps = video_state["fps"]
masks, logits, painted_images = model.generator(images=following_frames, template_mask=template_mask)
# clear GPU memory
model.xmem.clear_memory()
if interactive_state["track_end_number"]:
video_state["masks"][video_state["select_frame_number"]:interactive_state["track_end_number"]] = masks
video_state["logits"][video_state["select_frame_number"]:interactive_state["track_end_number"]] = logits
video_state["painted_images"][video_state["select_frame_number"]:interactive_state["track_end_number"]] = painted_images
else:
video_state["masks"][video_state["select_frame_number"]:] = masks
video_state["logits"][video_state["select_frame_number"]:] = logits
video_state["painted_images"][video_state["select_frame_number"]:] = painted_images
video_output = generate_video_from_frames(video_state["painted_images"], output_path="./result/track/{}".format(video_state["video_name"]), fps=fps) # import video_input to name the output video
interactive_state["inference_times"] += 1
print("For generating this tracking result, inference times: {}, click times: {}, positive: {}, negative: {}".format(interactive_state["inference_times"],
interactive_state["positive_click_times"]+interactive_state["negative_click_times"],
interactive_state["positive_click_times"],
interactive_state["negative_click_times"]))
#### shanggao code for mask save
if interactive_state["mask_save"]:
if not os.path.exists('./result/mask/{}'.format(video_state["video_name"].split('.')[0])):
os.makedirs('./result/mask/{}'.format(video_state["video_name"].split('.')[0]))
i = 0
print("save mask")
for mask in video_state["masks"]:
np.save(os.path.join('./result/mask/{}'.format(video_state["video_name"].split('.')[0]), '{:05d}.npy'.format(i)), mask)
i+=1
# save_mask(video_state["masks"], video_state["video_name"])
#### shanggao code for mask save
return video_output, video_state, interactive_state
# extracting masks from mask_dropdown
# def extract_sole_mask(video_state, mask_dropdown):
# combined_masks =
# unique_masks = np.unique(combined_masks)
# return 0
# inpaint
def inpaint_video(video_state, interactive_state, mask_dropdown):
frames = np.asarray(video_state["origin_images"])
fps = video_state["fps"]
inpaint_masks = np.asarray(video_state["masks"])
if len(mask_dropdown) == 0:
mask_dropdown = ["mask_001"]
mask_dropdown.sort()
# convert mask_dropdown to mask numbers
inpaint_mask_numbers = [int(mask_dropdown[i].split("_")[1]) for i in range(len(mask_dropdown))]
# interate through all masks and remove the masks that are not in mask_dropdown
unique_masks = np.unique(inpaint_masks)
num_masks = len(unique_masks) - 1
for i in range(1, num_masks + 1):
if i in inpaint_mask_numbers:
continue
inpaint_masks[inpaint_masks==i] = 0
# inpaint for videos
inpainted_frames = model.baseinpainter.inpaint(frames, inpaint_masks, ratio=interactive_state["resize_ratio"]) # numpy array, T, H, W, 3
video_output = generate_video_from_frames(inpainted_frames, output_path="./result/inpaint/{}".format(video_state["video_name"]), fps=fps) # import video_input to name the output video
return video_output
# generate video after vos inference
def generate_video_from_frames(frames, output_path, fps=30):
"""
Generates a video from a list of frames.
Args:
frames (list of numpy arrays): The frames to include in the video.
output_path (str): The path to save the generated video.
fps (int, optional): The frame rate of the output video. Defaults to 30.
"""
# height, width, layers = frames[0].shape
# fourcc = cv2.VideoWriter_fourcc(*"mp4v")
# video = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
# print(output_path)
# for frame in frames:
# video.write(frame)
# video.release()
frames = torch.from_numpy(np.asarray(frames))
if not os.path.exists(os.path.dirname(output_path)):
os.makedirs(os.path.dirname(output_path))
torchvision.io.write_video(output_path, frames, fps=fps, video_codec="libx264")
return output_path
# args, defined in track_anything.py
args = parse_augment()
# check and download checkpoints if needed
SAM_checkpoint_dict = {
'vit_h': "sam_vit_h_4b8939.pth",
'vit_l': "sam_vit_l_0b3195.pth",
"vit_b": "sam_vit_b_01ec64.pth"
}
SAM_checkpoint_url_dict = {
'vit_h': "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth",
'vit_l': "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_l_0b3195.pth",
'vit_b': "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth"
}
sam_checkpoint = SAM_checkpoint_dict[args.sam_model_type]
sam_checkpoint_url = SAM_checkpoint_url_dict[args.sam_model_type]
xmem_checkpoint = "XMem-s012.pth"
xmem_checkpoint_url = "https://github.com/hkchengrex/XMem/releases/download/v1.0/XMem-s012.pth"
e2fgvi_checkpoint = "E2FGVI-HQ-CVPR22.pth"
e2fgvi_checkpoint_id = "10wGdKSUOie0XmCr8SQ2A2FeDe-mfn5w3"
folder ="./checkpoints"
SAM_checkpoint = download_checkpoint(sam_checkpoint_url, folder, sam_checkpoint)
xmem_checkpoint = download_checkpoint(xmem_checkpoint_url, folder, xmem_checkpoint)
e2fgvi_checkpoint = download_checkpoint_from_google_drive(e2fgvi_checkpoint_id, folder, e2fgvi_checkpoint)
# args.port = 12315
# args.device = "cuda:2"
# args.mask_save = True
# initialize sam, xmem, e2fgvi models
model = TrackingAnything(SAM_checkpoint, xmem_checkpoint, e2fgvi_checkpoint,args)
title = """<p><h1 align="center">Track-Anything</h1></p>
"""
description = """<p>Gradio demo for Track Anything, a flexible and interactive tool for video object tracking, segmentation, and inpainting. I To use it, simply upload your video, or click one of the examples to load them. Code: <a href="https://github.com/gaomingqi/Track-Anything">https://github.com/gaomingqi/Track-Anything</a> <a href="https://huggingface.co/spaces/watchtowerss/Track-Anything?duplicate=true"><img style="display: inline; margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space" /></a></p>"""
with gr.Blocks() as iface:
"""
state for
"""
click_state = gr.State([[],[]])
interactive_state = gr.State({
"inference_times": 0,
"negative_click_times" : 0,
"positive_click_times": 0,
"mask_save": args.mask_save,
"multi_mask": {
"mask_names": [],
"masks": []
},
"track_end_number": None,
"resize_ratio": 1
}
)
video_state = gr.State(
{
"video_name": "",
"origin_images": None,
"painted_images": None,
"masks": None,
"inpaint_masks": None,
"logits": None,
"select_frame_number": 0,
"fps": 30
}
)
gr.Markdown(title)
gr.Markdown(description)
with gr.Row():
# for user video input
with gr.Column():
with gr.Row(scale=0.4):
video_input = gr.Video(autosize=True)
with gr.Column():
video_info = gr.Textbox()
resize_info = gr.Textbox(value="Due to server restrictions, please upload a video that is no longer than 2 minutes. If you want to use the inpaint function, it is best to download and use a machine with more VRAM locally. \
Alternatively, you can use the resize ratio slider to scale down the original image to around 360P resolution for faster processing.")
resize_ratio_slider = gr.Slider(minimum=0.02, maximum=1, step=0.02, value=1, label="Resize ratio", visible=True)
with gr.Row():
# put the template frame under the radio button
with gr.Column():
# extract frames
with gr.Column():
extract_frames_button = gr.Button(value="Get video info", interactive=True, variant="primary")
# click points settins, negative or positive, mode continuous or single
with gr.Row():
with gr.Row():
point_prompt = gr.Radio(
choices=["Positive", "Negative"],
value="Positive",
label="Point Prompt",
interactive=True,
visible=False)
click_mode = gr.Radio(
choices=["Continuous", "Single"],
value="Continuous",
label="Clicking Mode",
interactive=True,
visible=False)
with gr.Row():
clear_button_click = gr.Button(value="Clear Clicks", interactive=True, visible=False).style(height=160)
Add_mask_button = gr.Button(value="Add mask", interactive=True, visible=False)
template_frame = gr.Image(type="pil",interactive=True, elem_id="template_frame", visible=False).style(height=360)
image_selection_slider = gr.Slider(minimum=1, maximum=100, step=1, value=1, label="Image Selection", visible=False)
track_pause_number_slider = gr.Slider(minimum=1, maximum=100, step=1, value=1, label="Track end frames", visible=False)
with gr.Column():
mask_dropdown = gr.Dropdown(multiselect=True, value=[], label="Mask_select", info=".", visible=False)
remove_mask_button = gr.Button(value="Remove mask", interactive=True, visible=False)
video_output = gr.Video(autosize=True, visible=False).style(height=360)
with gr.Row():
tracking_video_predict_button = gr.Button(value="Tracking", visible=False)
inpaint_video_predict_button = gr.Button(value="Inpaint", visible=False)
# first step: get the video information
extract_frames_button.click(
fn=get_frames_from_video,
inputs=[
video_input, video_state
],
outputs=[video_state, video_info, template_frame,
image_selection_slider, track_pause_number_slider,point_prompt, click_mode, clear_button_click, Add_mask_button, template_frame,
tracking_video_predict_button, video_output, mask_dropdown, remove_mask_button, inpaint_video_predict_button]
)
# second step: select images from slider
image_selection_slider.release(fn=select_template,
inputs=[image_selection_slider, video_state, interactive_state],
outputs=[template_frame, video_state, interactive_state], api_name="select_image")
track_pause_number_slider.release(fn=get_end_number,
inputs=[track_pause_number_slider, video_state, interactive_state],
outputs=[template_frame, interactive_state], api_name="end_image")
resize_ratio_slider.release(fn=get_resize_ratio,
inputs=[resize_ratio_slider, interactive_state],
outputs=[interactive_state], api_name="resize_ratio")
# click select image to get mask using sam
template_frame.select(
fn=sam_refine,
inputs=[video_state, point_prompt, click_state, interactive_state],
outputs=[template_frame, video_state, interactive_state]
)
# add different mask
Add_mask_button.click(
fn=add_multi_mask,
inputs=[video_state, interactive_state, mask_dropdown],
outputs=[interactive_state, mask_dropdown, template_frame, click_state]
)
remove_mask_button.click(
fn=remove_multi_mask,
inputs=[interactive_state],
outputs=[interactive_state]
)
# tracking video from select image and mask
tracking_video_predict_button.click(
fn=vos_tracking_video,
inputs=[video_state, interactive_state, mask_dropdown],
outputs=[video_output, video_state, interactive_state]
)
# inpaint video from select image and mask
inpaint_video_predict_button.click(
fn=inpaint_video,
inputs=[video_state, interactive_state, mask_dropdown],
outputs=[video_output]
)
# click to get mask
mask_dropdown.change(
fn=show_mask,
inputs=[video_state, interactive_state, mask_dropdown],
outputs=[template_frame]
)
# clear input
video_input.clear(
lambda: (
{
"origin_images": None,
"painted_images": None,
"masks": None,
"inpaint_masks": None,
"logits": None,
"select_frame_number": 0,
"fps": 30
},
{
"inference_times": 0,
"negative_click_times" : 0,
"positive_click_times": 0,
"mask_save": args.mask_save,
"multi_mask": {
"mask_names": [],
"masks": []
},
"track_end_number": 0,
"resize_ratio": 1
},
[[],[]],
None,
None,
gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), \
gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), \
gr.update(visible=False), gr.update(visible=False), gr.update(visible=False, value=[]), gr.update(visible=False), gr.update(visible=False) \
),
[],
[
video_state,
interactive_state,
click_state,
video_output,
template_frame,
tracking_video_predict_button, image_selection_slider , track_pause_number_slider,point_prompt, click_mode, clear_button_click,
Add_mask_button, template_frame, tracking_video_predict_button, video_output, mask_dropdown, remove_mask_button,inpaint_video_predict_button
],
queue=False,
show_progress=False)
# points clear
clear_button_click.click(
fn = clear_click,
inputs = [video_state, click_state,],
outputs = [template_frame,click_state],
)
# set example
gr.Markdown("## Examples")
gr.Examples(
examples=[os.path.join(os.path.dirname(__file__), "./test_sample/", test_sample) for test_sample in ["test-sample8.mp4","test-sample4.mp4", \
"test-sample2.mp4","test-sample13.mp4"]],
fn=run_example,
inputs=[
video_input
],
outputs=[video_input],
# cache_examples=True,
)
iface.queue(concurrency_count=1)
iface.launch(debug=True)
|