Spaces:
Runtime error
Runtime error
File size: 16,935 Bytes
4d1ebf3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 |
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import torch
from mmcv.cnn import ConvModule
from mmengine.runner import load_checkpoint
class FlowCompletionLoss(nn.Module):
"""Flow completion loss"""
def __init__(self):
super().__init__()
self.fix_spynet = SPyNet()
for p in self.fix_spynet.parameters():
p.requires_grad = False
self.l1_criterion = nn.L1Loss()
def forward(self, pred_flows, gt_local_frames):
b, l_t, c, h, w = gt_local_frames.size()
with torch.no_grad():
# compute gt forward and backward flows
gt_local_frames = F.interpolate(gt_local_frames.view(-1, c, h, w),
scale_factor=1 / 4,
mode='bilinear',
align_corners=True,
recompute_scale_factor=True)
gt_local_frames = gt_local_frames.view(b, l_t, c, h // 4, w // 4)
gtlf_1 = gt_local_frames[:, :-1, :, :, :].reshape(
-1, c, h // 4, w // 4)
gtlf_2 = gt_local_frames[:, 1:, :, :, :].reshape(
-1, c, h // 4, w // 4)
gt_flows_forward = self.fix_spynet(gtlf_1, gtlf_2)
gt_flows_backward = self.fix_spynet(gtlf_2, gtlf_1)
# calculate loss for flow completion
forward_flow_loss = self.l1_criterion(
pred_flows[0].view(-1, 2, h // 4, w // 4), gt_flows_forward)
backward_flow_loss = self.l1_criterion(
pred_flows[1].view(-1, 2, h // 4, w // 4), gt_flows_backward)
flow_loss = forward_flow_loss + backward_flow_loss
return flow_loss
class SPyNet(nn.Module):
"""SPyNet network structure.
The difference to the SPyNet in [tof.py] is that
1. more SPyNetBasicModule is used in this version, and
2. no batch normalization is used in this version.
Paper:
Optical Flow Estimation using a Spatial Pyramid Network, CVPR, 2017
Args:
pretrained (str): path for pre-trained SPyNet. Default: None.
"""
def __init__(
self,
use_pretrain=True,
pretrained='https://download.openmmlab.com/mmediting/restorers/basicvsr/spynet_20210409-c6c1bd09.pth'
):
super().__init__()
self.basic_module = nn.ModuleList(
[SPyNetBasicModule() for _ in range(6)])
if use_pretrain:
if isinstance(pretrained, str):
print("load pretrained SPyNet...")
load_checkpoint(self, pretrained, strict=True)
elif pretrained is not None:
raise TypeError('[pretrained] should be str or None, '
f'but got {type(pretrained)}.')
self.register_buffer(
'mean',
torch.Tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1))
self.register_buffer(
'std',
torch.Tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1))
def compute_flow(self, ref, supp):
"""Compute flow from ref to supp.
Note that in this function, the images are already resized to a
multiple of 32.
Args:
ref (Tensor): Reference image with shape of (n, 3, h, w).
supp (Tensor): Supporting image with shape of (n, 3, h, w).
Returns:
Tensor: Estimated optical flow: (n, 2, h, w).
"""
n, _, h, w = ref.size()
# normalize the input images
ref = [(ref - self.mean) / self.std]
supp = [(supp - self.mean) / self.std]
# generate downsampled frames
for level in range(5):
ref.append(
F.avg_pool2d(input=ref[-1],
kernel_size=2,
stride=2,
count_include_pad=False))
supp.append(
F.avg_pool2d(input=supp[-1],
kernel_size=2,
stride=2,
count_include_pad=False))
ref = ref[::-1]
supp = supp[::-1]
# flow computation
flow = ref[0].new_zeros(n, 2, h // 32, w // 32)
for level in range(len(ref)):
if level == 0:
flow_up = flow
else:
flow_up = F.interpolate(input=flow,
scale_factor=2,
mode='bilinear',
align_corners=True) * 2.0
# add the residue to the upsampled flow
flow = flow_up + self.basic_module[level](torch.cat([
ref[level],
flow_warp(supp[level],
flow_up.permute(0, 2, 3, 1).contiguous(),
padding_mode='border'), flow_up
], 1))
return flow
def forward(self, ref, supp):
"""Forward function of SPyNet.
This function computes the optical flow from ref to supp.
Args:
ref (Tensor): Reference image with shape of (n, 3, h, w).
supp (Tensor): Supporting image with shape of (n, 3, h, w).
Returns:
Tensor: Estimated optical flow: (n, 2, h, w).
"""
# upsize to a multiple of 32
h, w = ref.shape[2:4]
w_up = w if (w % 32) == 0 else 32 * (w // 32 + 1)
h_up = h if (h % 32) == 0 else 32 * (h // 32 + 1)
ref = F.interpolate(input=ref,
size=(h_up, w_up),
mode='bilinear',
align_corners=False)
supp = F.interpolate(input=supp,
size=(h_up, w_up),
mode='bilinear',
align_corners=False)
# compute flow, and resize back to the original resolution
flow = F.interpolate(input=self.compute_flow(ref, supp),
size=(h, w),
mode='bilinear',
align_corners=False)
# adjust the flow values
flow[:, 0, :, :] *= float(w) / float(w_up)
flow[:, 1, :, :] *= float(h) / float(h_up)
return flow
class SPyNetBasicModule(nn.Module):
"""Basic Module for SPyNet.
Paper:
Optical Flow Estimation using a Spatial Pyramid Network, CVPR, 2017
"""
def __init__(self):
super().__init__()
self.basic_module = nn.Sequential(
ConvModule(in_channels=8,
out_channels=32,
kernel_size=7,
stride=1,
padding=3,
norm_cfg=None,
act_cfg=dict(type='ReLU')),
ConvModule(in_channels=32,
out_channels=64,
kernel_size=7,
stride=1,
padding=3,
norm_cfg=None,
act_cfg=dict(type='ReLU')),
ConvModule(in_channels=64,
out_channels=32,
kernel_size=7,
stride=1,
padding=3,
norm_cfg=None,
act_cfg=dict(type='ReLU')),
ConvModule(in_channels=32,
out_channels=16,
kernel_size=7,
stride=1,
padding=3,
norm_cfg=None,
act_cfg=dict(type='ReLU')),
ConvModule(in_channels=16,
out_channels=2,
kernel_size=7,
stride=1,
padding=3,
norm_cfg=None,
act_cfg=None))
def forward(self, tensor_input):
"""
Args:
tensor_input (Tensor): Input tensor with shape (b, 8, h, w).
8 channels contain:
[reference image (3), neighbor image (3), initial flow (2)].
Returns:
Tensor: Refined flow with shape (b, 2, h, w)
"""
return self.basic_module(tensor_input)
# Flow visualization code used from https://github.com/tomrunia/OpticalFlow_Visualization
def make_colorwheel():
"""
Generates a color wheel for optical flow visualization as presented in:
Baker et al. "A Database and Evaluation Methodology for Optical Flow" (ICCV, 2007)
URL: http://vision.middlebury.edu/flow/flowEval-iccv07.pdf
Code follows the original C++ source code of Daniel Scharstein.
Code follows the the Matlab source code of Deqing Sun.
Returns:
np.ndarray: Color wheel
"""
RY = 15
YG = 6
GC = 4
CB = 11
BM = 13
MR = 6
ncols = RY + YG + GC + CB + BM + MR
colorwheel = np.zeros((ncols, 3))
col = 0
# RY
colorwheel[0:RY, 0] = 255
colorwheel[0:RY, 1] = np.floor(255 * np.arange(0, RY) / RY)
col = col + RY
# YG
colorwheel[col:col + YG, 0] = 255 - np.floor(255 * np.arange(0, YG) / YG)
colorwheel[col:col + YG, 1] = 255
col = col + YG
# GC
colorwheel[col:col + GC, 1] = 255
colorwheel[col:col + GC, 2] = np.floor(255 * np.arange(0, GC) / GC)
col = col + GC
# CB
colorwheel[col:col + CB, 1] = 255 - np.floor(255 * np.arange(CB) / CB)
colorwheel[col:col + CB, 2] = 255
col = col + CB
# BM
colorwheel[col:col + BM, 2] = 255
colorwheel[col:col + BM, 0] = np.floor(255 * np.arange(0, BM) / BM)
col = col + BM
# MR
colorwheel[col:col + MR, 2] = 255 - np.floor(255 * np.arange(MR) / MR)
colorwheel[col:col + MR, 0] = 255
return colorwheel
def flow_uv_to_colors(u, v, convert_to_bgr=False):
"""
Applies the flow color wheel to (possibly clipped) flow components u and v.
According to the C++ source code of Daniel Scharstein
According to the Matlab source code of Deqing Sun
Args:
u (np.ndarray): Input horizontal flow of shape [H,W]
v (np.ndarray): Input vertical flow of shape [H,W]
convert_to_bgr (bool, optional): Convert output image to BGR. Defaults to False.
Returns:
np.ndarray: Flow visualization image of shape [H,W,3]
"""
flow_image = np.zeros((u.shape[0], u.shape[1], 3), np.uint8)
colorwheel = make_colorwheel() # shape [55x3]
ncols = colorwheel.shape[0]
rad = np.sqrt(np.square(u) + np.square(v))
a = np.arctan2(-v, -u) / np.pi
fk = (a + 1) / 2 * (ncols - 1)
k0 = np.floor(fk).astype(np.int32)
k1 = k0 + 1
k1[k1 == ncols] = 0
f = fk - k0
for i in range(colorwheel.shape[1]):
tmp = colorwheel[:, i]
col0 = tmp[k0] / 255.0
col1 = tmp[k1] / 255.0
col = (1 - f) * col0 + f * col1
idx = (rad <= 1)
col[idx] = 1 - rad[idx] * (1 - col[idx])
col[~idx] = col[~idx] * 0.75 # out of range
# Note the 2-i => BGR instead of RGB
ch_idx = 2 - i if convert_to_bgr else i
flow_image[:, :, ch_idx] = np.floor(255 * col)
return flow_image
def flow_to_image(flow_uv, clip_flow=None, convert_to_bgr=False):
"""
Expects a two dimensional flow image of shape.
Args:
flow_uv (np.ndarray): Flow UV image of shape [H,W,2]
clip_flow (float, optional): Clip maximum of flow values. Defaults to None.
convert_to_bgr (bool, optional): Convert output image to BGR. Defaults to False.
Returns:
np.ndarray: Flow visualization image of shape [H,W,3]
"""
assert flow_uv.ndim == 3, 'input flow must have three dimensions'
assert flow_uv.shape[2] == 2, 'input flow must have shape [H,W,2]'
if clip_flow is not None:
flow_uv = np.clip(flow_uv, 0, clip_flow)
u = flow_uv[:, :, 0]
v = flow_uv[:, :, 1]
rad = np.sqrt(np.square(u) + np.square(v))
rad_max = np.max(rad)
epsilon = 1e-5
u = u / (rad_max + epsilon)
v = v / (rad_max + epsilon)
return flow_uv_to_colors(u, v, convert_to_bgr)
def flow_warp(x,
flow,
interpolation='bilinear',
padding_mode='zeros',
align_corners=True):
"""Warp an image or a feature map with optical flow.
Args:
x (Tensor): Tensor with size (n, c, h, w).
flow (Tensor): Tensor with size (n, h, w, 2). The last dimension is
a two-channel, denoting the width and height relative offsets.
Note that the values are not normalized to [-1, 1].
interpolation (str): Interpolation mode: 'nearest' or 'bilinear'.
Default: 'bilinear'.
padding_mode (str): Padding mode: 'zeros' or 'border' or 'reflection'.
Default: 'zeros'.
align_corners (bool): Whether align corners. Default: True.
Returns:
Tensor: Warped image or feature map.
"""
if x.size()[-2:] != flow.size()[1:3]:
raise ValueError(f'The spatial sizes of input ({x.size()[-2:]}) and '
f'flow ({flow.size()[1:3]}) are not the same.')
_, _, h, w = x.size()
# create mesh grid
grid_y, grid_x = torch.meshgrid(torch.arange(0, h), torch.arange(0, w))
grid = torch.stack((grid_x, grid_y), 2).type_as(x) # (w, h, 2)
grid.requires_grad = False
grid_flow = grid + flow
# scale grid_flow to [-1,1]
grid_flow_x = 2.0 * grid_flow[:, :, :, 0] / max(w - 1, 1) - 1.0
grid_flow_y = 2.0 * grid_flow[:, :, :, 1] / max(h - 1, 1) - 1.0
grid_flow = torch.stack((grid_flow_x, grid_flow_y), dim=3)
output = F.grid_sample(x,
grid_flow,
mode=interpolation,
padding_mode=padding_mode,
align_corners=align_corners)
return output
def initial_mask_flow(mask):
"""
mask 1 indicates valid pixel 0 indicates unknown pixel
"""
B, T, C, H, W = mask.shape
# calculate relative position
grid_y, grid_x = torch.meshgrid(torch.arange(0, H), torch.arange(0, W))
grid_y, grid_x = grid_y.type_as(mask), grid_x.type_as(mask)
abs_relative_pos_y = H - torch.abs(grid_y[None, :, :] - grid_y[:, None, :])
relative_pos_y = H - (grid_y[None, :, :] - grid_y[:, None, :])
abs_relative_pos_x = W - torch.abs(grid_x[:, None, :] - grid_x[:, :, None])
relative_pos_x = W - (grid_x[:, None, :] - grid_x[:, :, None])
# calculate the nearest indices
pos_up = mask.unsqueeze(3).repeat(
1, 1, 1, H, 1, 1).flip(4) * abs_relative_pos_y[None, None, None] * (
relative_pos_y <= H)[None, None, None]
nearest_indice_up = pos_up.max(dim=4)[1]
pos_down = mask.unsqueeze(3).repeat(1, 1, 1, H, 1, 1) * abs_relative_pos_y[
None, None, None] * (relative_pos_y <= H)[None, None, None]
nearest_indice_down = (pos_down).max(dim=4)[1]
pos_left = mask.unsqueeze(4).repeat(
1, 1, 1, 1, W, 1).flip(5) * abs_relative_pos_x[None, None, None] * (
relative_pos_x <= W)[None, None, None]
nearest_indice_left = (pos_left).max(dim=5)[1]
pos_right = mask.unsqueeze(4).repeat(
1, 1, 1, 1, W, 1) * abs_relative_pos_x[None, None, None] * (
relative_pos_x <= W)[None, None, None]
nearest_indice_right = (pos_right).max(dim=5)[1]
# NOTE: IMPORTANT !!! depending on how to use this offset
initial_offset_up = -(nearest_indice_up - grid_y[None, None, None]).flip(3)
initial_offset_down = nearest_indice_down - grid_y[None, None, None]
initial_offset_left = -(nearest_indice_left -
grid_x[None, None, None]).flip(4)
initial_offset_right = nearest_indice_right - grid_x[None, None, None]
# nearest_indice_x = (mask.unsqueeze(1).repeat(1, img_width, 1) * relative_pos_x).max(dim=2)[1]
# initial_offset_x = nearest_indice_x - grid_x
# handle the boundary cases
final_offset_down = (initial_offset_down < 0) * initial_offset_up + (
initial_offset_down > 0) * initial_offset_down
final_offset_up = (initial_offset_up > 0) * initial_offset_down + (
initial_offset_up < 0) * initial_offset_up
final_offset_right = (initial_offset_right < 0) * initial_offset_left + (
initial_offset_right > 0) * initial_offset_right
final_offset_left = (initial_offset_left > 0) * initial_offset_right + (
initial_offset_left < 0) * initial_offset_left
zero_offset = torch.zeros_like(final_offset_down)
# out = torch.cat([final_offset_left, zero_offset, final_offset_right, zero_offset, zero_offset, final_offset_up, zero_offset, final_offset_down], dim=2)
out = torch.cat([
zero_offset, final_offset_left, zero_offset, final_offset_right,
final_offset_up, zero_offset, final_offset_down, zero_offset
],
dim=2)
return out
|