Spaces:
Runtime error
Runtime error
import gradio as gr | |
from demo import automask_image_app, automask_video_app, sahi_autoseg_app | |
import argparse | |
import cv2 | |
import time | |
from PIL import Image | |
import numpy as np | |
import os | |
import sys | |
sys.path.append(sys.path[0]+"/tracker") | |
sys.path.append(sys.path[0]+"/tracker/model") | |
from track_anything import TrackingAnything | |
from track_anything import parse_augment | |
import requests | |
import json | |
import torchvision | |
import torch | |
import concurrent.futures | |
import queue | |
# download checkpoints | |
def download_checkpoint(url, folder, filename): | |
os.makedirs(folder, exist_ok=True) | |
filepath = os.path.join(folder, filename) | |
if not os.path.exists(filepath): | |
print("download checkpoints ......") | |
response = requests.get(url, stream=True) | |
with open(filepath, "wb") as f: | |
for chunk in response.iter_content(chunk_size=8192): | |
if chunk: | |
f.write(chunk) | |
print("download successfully!") | |
return filepath | |
# convert points input to prompt state | |
def get_prompt(click_state, click_input): | |
inputs = json.loads(click_input) | |
points = click_state[0] | |
labels = click_state[1] | |
for input in inputs: | |
points.append(input[:2]) | |
labels.append(input[2]) | |
click_state[0] = points | |
click_state[1] = labels | |
prompt = { | |
"prompt_type":["click"], | |
"input_point":click_state[0], | |
"input_label":click_state[1], | |
"multimask_output":"True", | |
} | |
return prompt | |
# extract frames from upload video | |
def get_frames_from_video(video_input, video_state): | |
""" | |
Args: | |
video_path:str | |
timestamp:float64 | |
Return | |
[[0:nearest_frame], [nearest_frame:], nearest_frame] | |
""" | |
video_path = video_input | |
frames = [] | |
try: | |
cap = cv2.VideoCapture(video_path) | |
fps = cap.get(cv2.CAP_PROP_FPS) | |
while cap.isOpened(): | |
ret, frame = cap.read() | |
if ret == True: | |
frames.append(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)) | |
else: | |
break | |
except (OSError, TypeError, ValueError, KeyError, SyntaxError) as e: | |
print("read_frame_source:{} error. {}\n".format(video_path, str(e))) | |
# initialize video_state | |
video_state = { | |
"video_name": os.path.split(video_path)[-1], | |
"origin_images": frames, | |
"painted_images": frames.copy(), | |
"masks": [None]*len(frames), | |
"logits": [None]*len(frames), | |
"select_frame_number": 0, | |
"fps": 30 | |
} | |
return video_state, gr.update(visible=True, maximum=len(frames), value=1) | |
# get the select frame from gradio slider | |
def select_template(image_selection_slider, video_state): | |
# images = video_state[1] | |
image_selection_slider -= 1 | |
video_state["select_frame_number"] = image_selection_slider | |
# once select a new template frame, set the image in sam | |
model.samcontroler.sam_controler.reset_image() | |
model.samcontroler.sam_controler.set_image(video_state["origin_images"][image_selection_slider]) | |
return video_state["painted_images"][image_selection_slider], video_state | |
# use sam to get the mask | |
def sam_refine(video_state, point_prompt, click_state, interactive_state, evt:gr.SelectData): | |
""" | |
Args: | |
template_frame: PIL.Image | |
point_prompt: flag for positive or negative button click | |
click_state: [[points], [labels]] | |
""" | |
if point_prompt == "Positive": | |
coordinate = "[[{},{},1]]".format(evt.index[0], evt.index[1]) | |
interactive_state["positive_click_times"] += 1 | |
else: | |
coordinate = "[[{},{},0]]".format(evt.index[0], evt.index[1]) | |
interactive_state["negative_click_times"] += 1 | |
# prompt for sam model | |
prompt = get_prompt(click_state=click_state, click_input=coordinate) | |
mask, logit, painted_image = model.first_frame_click( | |
image=video_state["origin_images"][video_state["select_frame_number"]], | |
points=np.array(prompt["input_point"]), | |
labels=np.array(prompt["input_label"]), | |
multimask=prompt["multimask_output"], | |
) | |
video_state["masks"][video_state["select_frame_number"]] = mask | |
video_state["logits"][video_state["select_frame_number"]] = logit | |
video_state["painted_images"][video_state["select_frame_number"]] = painted_image | |
return painted_image, video_state, interactive_state | |
# tracking vos | |
def vos_tracking_video(video_state, interactive_state): | |
model.xmem.clear_memory() | |
following_frames = video_state["origin_images"][video_state["select_frame_number"]:] | |
template_mask = video_state["masks"][video_state["select_frame_number"]] | |
fps = video_state["fps"] | |
masks, logits, painted_images = model.generator(images=following_frames, template_mask=template_mask) | |
video_state["masks"][video_state["select_frame_number"]:] = masks | |
video_state["logits"][video_state["select_frame_number"]:] = logits | |
video_state["painted_images"][video_state["select_frame_number"]:] = painted_images | |
video_output = generate_video_from_frames(video_state["painted_images"], output_path="./result/{}".format(video_state["video_name"]), fps=fps) # import video_input to name the output video | |
interactive_state["inference_times"] += 1 | |
print("For generating this tracking result, inference times: {}, click times: {}, positive: {}, negative: {}".format(interactive_state["inference_times"], | |
interactive_state["positive_click_times"]+interactive_state["negative_click_times"], | |
interactive_state["positive_click_times"], | |
interactive_state["negative_click_times"])) | |
#### shanggao code for mask save | |
if interactive_state["mask_save"]: | |
if not os.path.exists('./result/mask/{}'.format(video_state["video_name"].split('.')[0])): | |
os.makedirs('./result/mask/{}'.format(video_state["video_name"].split('.')[0])) | |
i = 0 | |
print("save mask") | |
for mask in video_state["masks"]: | |
np.save(os.path.join('./result/mask/{}'.format(video_state["video_name"].split('.')[0]), '{:05d}.npy'.format(i)), mask) | |
i+=1 | |
# save_mask(video_state["masks"], video_state["video_name"]) | |
#### shanggao code for mask save | |
return video_output, video_state, interactive_state | |
# generate video after vos inference | |
def generate_video_from_frames(frames, output_path, fps=30): | |
""" | |
Generates a video from a list of frames. | |
Args: | |
frames (list of numpy arrays): The frames to include in the video. | |
output_path (str): The path to save the generated video. | |
fps (int, optional): The frame rate of the output video. Defaults to 30. | |
""" | |
frames = torch.from_numpy(np.asarray(frames)) | |
if not os.path.exists(os.path.dirname(output_path)): | |
os.makedirs(os.path.dirname(output_path)) | |
torchvision.io.write_video(output_path, frames, fps=fps, video_codec="libx264") | |
return output_path | |
# check and download checkpoints if needed | |
SAM_checkpoint = "sam_vit_h_4b8939.pth" | |
sam_checkpoint_url = "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth" | |
xmem_checkpoint = "XMem-s012.pth" | |
xmem_checkpoint_url = "https://github.com/hkchengrex/XMem/releases/download/v1.0/XMem-s012.pth" | |
folder ="./checkpoints" | |
SAM_checkpoint = download_checkpoint(sam_checkpoint_url, folder, SAM_checkpoint) | |
xmem_checkpoint = download_checkpoint(xmem_checkpoint_url, folder, xmem_checkpoint) | |
# args, defined in track_anything.py | |
args = parse_augment() | |
# args.port = 12212 | |
# args.device = "cuda:4" | |
# args.mask_save = True | |
model = TrackingAnything(SAM_checkpoint, xmem_checkpoint, args) | |
with gr.Blocks() as iface: | |
""" | |
state for | |
""" | |
click_state = gr.State([[],[]]) | |
interactive_state = gr.State({ | |
"inference_times": 0, | |
"negative_click_times" : 0, | |
"positive_click_times": 0, | |
"mask_save": args.mask_save | |
}) | |
video_state = gr.State( | |
{ | |
"video_name": "", | |
"origin_images": None, | |
"painted_images": None, | |
"masks": None, | |
"logits": None, | |
"select_frame_number": 0, | |
"fps": 30 | |
} | |
) | |
with gr.Row(): | |
# for user video input | |
with gr.Column(scale=1.0): | |
video_input = gr.Video().style(height=360) | |
with gr.Row(scale=1): | |
# put the template frame under the radio button | |
with gr.Column(scale=0.5): | |
# extract frames | |
with gr.Column(): | |
extract_frames_button = gr.Button(value="Get video info", interactive=True, variant="primary") | |
# click points settins, negative or positive, mode continuous or single | |
with gr.Row(): | |
with gr.Row(scale=0.5): | |
point_prompt = gr.Radio( | |
choices=["Positive", "Negative"], | |
value="Positive", | |
label="Point Prompt", | |
interactive=True) | |
click_mode = gr.Radio( | |
choices=["Continuous", "Single"], | |
value="Continuous", | |
label="Clicking Mode", | |
interactive=True) | |
with gr.Row(scale=0.5): | |
clear_button_clike = gr.Button(value="Clear Clicks", interactive=True).style(height=160) | |
clear_button_image = gr.Button(value="Clear Image", interactive=True) | |
template_frame = gr.Image(type="pil",interactive=True, elem_id="template_frame").style(height=360) | |
image_selection_slider = gr.Slider(minimum=1, maximum=100, step=1, value=1, label="Image Selection", invisible=False) | |
with gr.Column(scale=0.5): | |
video_output = gr.Video().style(height=360) | |
tracking_video_predict_button = gr.Button(value="Tracking") | |
# first step: get the video information | |
extract_frames_button.click( | |
fn=get_frames_from_video, | |
inputs=[ | |
video_input, video_state | |
], | |
outputs=[video_state, image_selection_slider], | |
) | |
# second step: select images from slider | |
image_selection_slider.release(fn=select_template, | |
inputs=[image_selection_slider, video_state], | |
outputs=[template_frame, video_state], api_name="select_image") | |
template_frame.select( | |
fn=sam_refine, | |
inputs=[video_state, point_prompt, click_state, interactive_state], | |
outputs=[template_frame, video_state, interactive_state] | |
) | |
tracking_video_predict_button.click( | |
fn=vos_tracking_video, | |
inputs=[video_state, interactive_state], | |
outputs=[video_output, video_state, interactive_state] | |
) | |
# clear input | |
video_input.clear( | |
lambda: ( | |
{ | |
"origin_images": None, | |
"painted_images": None, | |
"masks": None, | |
"logits": None, | |
"select_frame_number": 0, | |
"fps": 30 | |
}, | |
{ | |
"inference_times": 0, | |
"negative_click_times" : 0, | |
"positive_click_times": 0, | |
"mask_save": args.mask_save | |
}, | |
[[],[]] | |
), | |
[], | |
[ | |
video_state, | |
interactive_state, | |
click_state, | |
], | |
queue=False, | |
show_progress=False | |
) | |
clear_button_image.click( | |
lambda: ( | |
{ | |
"origin_images": None, | |
"painted_images": None, | |
"masks": None, | |
"logits": None, | |
"select_frame_number": 0, | |
"fps": 30 | |
}, | |
{ | |
"inference_times": 0, | |
"negative_click_times" : 0, | |
"positive_click_times": 0, | |
"mask_save": args.mask_save | |
}, | |
[[],[]] | |
), | |
[], | |
[ | |
video_state, | |
interactive_state, | |
click_state, | |
], | |
queue=False, | |
show_progress=False | |
) | |
clear_button_clike.click( | |
lambda: ([[],[]]), | |
[], | |
[click_state], | |
queue=False, | |
show_progress=False | |
) | |
iface.queue(concurrency_count=1) | |
iface.launch(enable_queue=True) | |