watchtowerss's picture
track-anything --version 1
4d1ebf3
"""
This file defines XMem, the highest level nn.Module interface
During training, it is used by trainer.py
During evaluation, it is used by inference_core.py
It further depends on modules.py which gives more detailed implementations of sub-modules
"""
import torch
import torch.nn as nn
from model.aggregate import aggregate
from model.modules import *
from model.memory_util import *
class XMem(nn.Module):
def __init__(self, config, model_path=None, map_location=None):
"""
model_path/map_location are used in evaluation only
map_location is for converting models saved in cuda to cpu
"""
super().__init__()
model_weights = self.init_hyperparameters(config, model_path, map_location)
self.single_object = config.get('single_object', False)
print(f'Single object mode: {self.single_object}')
self.key_encoder = KeyEncoder()
self.value_encoder = ValueEncoder(self.value_dim, self.hidden_dim, self.single_object)
# Projection from f16 feature space to key/value space
self.key_proj = KeyProjection(1024, self.key_dim)
self.decoder = Decoder(self.value_dim, self.hidden_dim)
if model_weights is not None:
self.load_weights(model_weights, init_as_zero_if_needed=True)
def encode_key(self, frame, need_sk=True, need_ek=True):
# Determine input shape
if len(frame.shape) == 5:
# shape is b*t*c*h*w
need_reshape = True
b, t = frame.shape[:2]
# flatten so that we can feed them into a 2D CNN
frame = frame.flatten(start_dim=0, end_dim=1)
elif len(frame.shape) == 4:
# shape is b*c*h*w
need_reshape = False
else:
raise NotImplementedError
f16, f8, f4 = self.key_encoder(frame)
key, shrinkage, selection = self.key_proj(f16, need_sk, need_ek)
if need_reshape:
# B*C*T*H*W
key = key.view(b, t, *key.shape[-3:]).transpose(1, 2).contiguous()
if shrinkage is not None:
shrinkage = shrinkage.view(b, t, *shrinkage.shape[-3:]).transpose(1, 2).contiguous()
if selection is not None:
selection = selection.view(b, t, *selection.shape[-3:]).transpose(1, 2).contiguous()
# B*T*C*H*W
f16 = f16.view(b, t, *f16.shape[-3:])
f8 = f8.view(b, t, *f8.shape[-3:])
f4 = f4.view(b, t, *f4.shape[-3:])
return key, shrinkage, selection, f16, f8, f4
def encode_value(self, frame, image_feat_f16, h16, masks, is_deep_update=True):
num_objects = masks.shape[1]
if num_objects != 1:
others = torch.cat([
torch.sum(
masks[:, [j for j in range(num_objects) if i!=j]]
, dim=1, keepdim=True)
for i in range(num_objects)], 1)
else:
others = torch.zeros_like(masks)
g16, h16 = self.value_encoder(frame, image_feat_f16, h16, masks, others, is_deep_update)
return g16, h16
# Used in training only.
# This step is replaced by MemoryManager in test time
def read_memory(self, query_key, query_selection, memory_key,
memory_shrinkage, memory_value):
"""
query_key : B * CK * H * W
query_selection : B * CK * H * W
memory_key : B * CK * T * H * W
memory_shrinkage: B * 1 * T * H * W
memory_value : B * num_objects * CV * T * H * W
"""
batch_size, num_objects = memory_value.shape[:2]
memory_value = memory_value.flatten(start_dim=1, end_dim=2)
affinity = get_affinity(memory_key, memory_shrinkage, query_key, query_selection)
memory = readout(affinity, memory_value)
memory = memory.view(batch_size, num_objects, self.value_dim, *memory.shape[-2:])
return memory
def segment(self, multi_scale_features, memory_readout,
hidden_state, selector=None, h_out=True, strip_bg=True):
hidden_state, logits = self.decoder(*multi_scale_features, hidden_state, memory_readout, h_out=h_out)
prob = torch.sigmoid(logits)
if selector is not None:
prob = prob * selector
logits, prob = aggregate(prob, dim=1, return_logits=True)
if strip_bg:
# Strip away the background
prob = prob[:, 1:]
return hidden_state, logits, prob
def forward(self, mode, *args, **kwargs):
if mode == 'encode_key':
return self.encode_key(*args, **kwargs)
elif mode == 'encode_value':
return self.encode_value(*args, **kwargs)
elif mode == 'read_memory':
return self.read_memory(*args, **kwargs)
elif mode == 'segment':
return self.segment(*args, **kwargs)
else:
raise NotImplementedError
def init_hyperparameters(self, config, model_path=None, map_location=None):
"""
Init three hyperparameters: key_dim, value_dim, and hidden_dim
If model_path is provided, we load these from the model weights
The actual parameters are then updated to the config in-place
Otherwise we load it either from the config or default
"""
if model_path is not None:
# load the model and key/value/hidden dimensions with some hacks
# config is updated with the loaded parameters
model_weights = torch.load(model_path, map_location=map_location)
self.key_dim = model_weights['key_proj.key_proj.weight'].shape[0]
self.value_dim = model_weights['value_encoder.fuser.block2.conv2.weight'].shape[0]
self.disable_hidden = 'decoder.hidden_update.transform.weight' not in model_weights
if self.disable_hidden:
self.hidden_dim = 0
else:
self.hidden_dim = model_weights['decoder.hidden_update.transform.weight'].shape[0]//3
print(f'Hyperparameters read from the model weights: '
f'C^k={self.key_dim}, C^v={self.value_dim}, C^h={self.hidden_dim}')
else:
model_weights = None
# load dimensions from config or default
if 'key_dim' not in config:
self.key_dim = 64
print(f'key_dim not found in config. Set to default {self.key_dim}')
else:
self.key_dim = config['key_dim']
if 'value_dim' not in config:
self.value_dim = 512
print(f'value_dim not found in config. Set to default {self.value_dim}')
else:
self.value_dim = config['value_dim']
if 'hidden_dim' not in config:
self.hidden_dim = 64
print(f'hidden_dim not found in config. Set to default {self.hidden_dim}')
else:
self.hidden_dim = config['hidden_dim']
self.disable_hidden = (self.hidden_dim <= 0)
config['key_dim'] = self.key_dim
config['value_dim'] = self.value_dim
config['hidden_dim'] = self.hidden_dim
return model_weights
def load_weights(self, src_dict, init_as_zero_if_needed=False):
# Maps SO weight (without other_mask) to MO weight (with other_mask)
for k in list(src_dict.keys()):
if k == 'value_encoder.conv1.weight':
if src_dict[k].shape[1] == 4:
print('Converting weights from single object to multiple objects.')
pads = torch.zeros((64,1,7,7), device=src_dict[k].device)
if not init_as_zero_if_needed:
print('Randomly initialized padding.')
nn.init.orthogonal_(pads)
else:
print('Zero-initialized padding.')
src_dict[k] = torch.cat([src_dict[k], pads], 1)
self.load_state_dict(src_dict)