Spaces:
Runtime error
Runtime error
import nltk | |
import pickle | |
import pandas as pd | |
import gradio as gr | |
import numpy as np | |
from sentence_transformers import SentenceTransformer, util | |
from transformers import pipeline | |
model_name = 'sentence-transformers/msmarco-distilbert-base-v4' | |
max_sequence_length = 512 | |
embeddings_filename = 'df10k_embeddings_msmarco-distilbert-base-v4.npy' | |
nltk.download('punkt') | |
filename = 'gs_10k_2021.txt' | |
import os | |
textfile = open(filename,'r') | |
text_corpus=textfile.read() | |
corpus = [] | |
sentence_count = [] | |
sentences = nltk.tokenize.sent_tokenize(text_corpus, language='english') | |
sentence_count.append(len(sentences)) | |
for _,s in enumerate(sentences): | |
corpus.append(s) | |
print(f'Number of sentences: {len(corpus)}') | |
# Load pre-embedded corpus | |
corpus_embeddings = np.load("df10k_embeddings_msmarco-distilbert-base-v4.npy") | |
print(f'Number of embeddings: {corpus_embeddings.shape[0]}') | |
# Load embedding model | |
model = SentenceTransformer(model_name) | |
model.max_seq_length = max_sequence_length | |
def find_sentences(query, hits): | |
query_embedding = model.encode(query) | |
hits = util.semantic_search(query_embedding, corpus_embeddings, top_k=hits) | |
hits = hits[0] | |
print(hits) | |
print(hits) | |
output = pd.DataFrame(columns=['Text', 'Score']) | |
for hit in hits: | |
corpus_id = hit['corpus_id'] | |
# Find source document based on sentence index | |
count = 0 | |
new_row = { | |
'Text': corpus[corpus_id], | |
'Score': '{:.2f}'.format(hit['score']) | |
} | |
output = output.append(new_row, ignore_index=True) | |
print(output) | |
return output | |
def process( query): | |
text = query | |
return text, find_sentences(text, 2) | |
# if __name__ == "__main__": | |
# print(process("Great Opportunity in business")) | |
# print(process("LIBOR replacement")) | |
# print(process("Marquee")) | |
# Gradio inputs | |
text_query = gr.inputs.Textbox(lines=1, label='Text input', default='Great Opportunity') | |
# Gradio outputs | |
speech_query = gr.outputs.Textbox(type='auto', label='Query string') | |
results = gr.outputs.Dataframe( | |
headers=[ 'Text', 'Score'], | |
label='Query results') | |
iface = gr.Interface( | |
theme='huggingface', | |
description='Great Opportunity in business', | |
fn=process, | |
inputs=[text_query], | |
outputs=[speech_query, results], | |
examples=[ | |
['Great Opportunity in business'], | |
['LIBOR replacement'], | |
['Marquee'], | |
], | |
allow_flagging=False | |
) | |
iface.launch() | |