import gradio as gr from transformers import pipeline import pytesseract from PIL import Image, UnidentifiedImageError import re import os import logging # Configurer les répertoires de cache os.environ['TRANSFORMERS_CACHE'] = '/app/.cache' os.environ['HF_HOME'] = '/app/.cache' # Configurer les logs logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # Initialiser les pipelines summarize = pipeline('summarization', model="facebook/bart-large-cnn") pipe = pipeline("summarization", model="plguillou/t5-base-fr-sum-cnndm") classify_zero_shot = pipeline("zero-shot-classification", model="facebook/bart-large-mnli") # Fonction de résumé de texte avec classification def summarize_text(text): if text.strip() == "": return "Veuillez entrer un texte", {} preprocessing_text = re.sub(r'\s+', ' ', text).strip() summary = pipe(preprocessing_text, do_sample=False) summary_text = summary[0].get('summary_text') logger.info(f"[INFO] Input data: {preprocessing_text}") logger.info(f"[INFO] Summary: {summary_text}") result = classify_zero_shot( summary_text, candidate_labels=["En Cours", "Non traiter", "Terminer"], hypothesis_template="Cet Résumé est sur {}." ) scores = {label: float(score) for label, score in zip(result['labels'], result['scores'])} return summary_text, scores # Fonction de chargement d'image def image_load(image): try: if image is None: return "Aucune image fournie", {} raw_text = pytesseract.image_to_string(image, lang='fra') preprocessing = re.sub(r'\s+', ' ', raw_text).strip() text_summary = pipe(preprocessing, do_sample=False) summary_text_from_image = text_summary[0].get('summary_text') result = classify_zero_shot( summary_text_from_image, candidate_labels=["En Cours", "Non traiter", "Terminer"], hypothesis_template="Cet Résumé est sur {}." ) scores = {label: float(score) for label, score in zip(result['labels'], result['scores'])} logger.info(f"[INFO] Input data: {preprocessing}") logger.info(f"[INFO] Summary: {result}") return summary_text_from_image,scores except UnidentifiedImageError: return "Impossible de charger l'image", {} except Exception as e: logger.error(f"Error processing image: {e}") return str(e), {} # Fonction de gestion des entrées def handle_input(text_input, image_input, mode): if mode == "Texte": return summarize_text(text_input) elif mode == "Image": return image_load(image_input) else: return "Sélectionnez une option valide", {} # Interface Gradio with gr.Blocks() as iface: gr.Markdown("## Sélectionnez une option") with gr.Row(): with gr.Column(): mode = gr.Dropdown(choices=["Texte", "Image"], label="Resumé Texte ou Image",info="Selectionner une options") text_input = gr.Textbox(lines=4,label="Entrée de texte") image_input = gr.Image(label="Téléverser une image", type="pil") submit_btn = gr.Button("Soumettre") with gr.Column(): output_summary = gr.Textbox(label="Résumé") output_classification = gr.Label(label="Classification") def update_inputs(mode_select): if mode_select == "Texte": return gr.update(visible=True), gr.update(visible=False) elif mode_select == "Image": return gr.update(visible=False), gr.update(visible=True) logger.info(f"[INFO] input mode: {update_inputs}") mode.change(fn=update_inputs, inputs=mode, outputs=[text_input, image_input]) submit_btn.click(fn=handle_input, inputs=[text_input, image_input, mode], outputs=[output_summary, output_classification]) if __name__ == "__main__": iface.launch(share=True)