Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -7,6 +7,7 @@ from transformers.models.whisper.tokenization_whisper import LANGUAGES
|
|
7 |
from transformers.pipelines.audio_utils import ffmpeg_read
|
8 |
|
9 |
model_id = "openai/whisper-large-v2"
|
|
|
10 |
|
11 |
|
12 |
LANGUANGE_MAP = {
|
@@ -58,19 +59,9 @@ LANGUANGE_MAP = {
|
|
58 |
}
|
59 |
|
60 |
|
61 |
-
processor = WhisperProcessor.from_pretrained(model_id)
|
62 |
-
model = WhisperForConditionalGeneration.from_pretrained(model_id)
|
63 |
-
model.eval()
|
64 |
-
model.to(device)
|
65 |
-
|
66 |
-
sampling_rate = processor.feature_extractor.sampling_rate
|
67 |
|
68 |
-
bos_token_id = processor.tokenizer.all_special_ids[-106]
|
69 |
-
decoder_input_ids = torch.tensor([bos_token_id]).to(device)
|
70 |
|
71 |
|
72 |
-
device = "cuda" if torch.cuda.is_available() else "CPU"
|
73 |
-
|
74 |
model_ckpt = "barto17/language-detection-fine-tuned-on-xlm-roberta-base"
|
75 |
model = AutoModelForSequenceClassification.from_pretrained(model_ckpt)
|
76 |
tokenizer = AutoTokenizer.from_pretrained(model_ckpt)
|
@@ -92,6 +83,16 @@ def process_audio_file(file):
|
|
92 |
return audio
|
93 |
|
94 |
def transcribe(Microphone, File_Upload):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
warn_output = ""
|
96 |
if (Microphone is not None) and (File_Upload is not None):
|
97 |
warn_output = "WARNING: You've uploaded an audio file and used the microphone. " \
|
|
|
7 |
from transformers.pipelines.audio_utils import ffmpeg_read
|
8 |
|
9 |
model_id = "openai/whisper-large-v2"
|
10 |
+
device = "cuda" if torch.cuda.is_available() else "CPU"
|
11 |
|
12 |
|
13 |
LANGUANGE_MAP = {
|
|
|
59 |
}
|
60 |
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
|
|
|
|
63 |
|
64 |
|
|
|
|
|
65 |
model_ckpt = "barto17/language-detection-fine-tuned-on-xlm-roberta-base"
|
66 |
model = AutoModelForSequenceClassification.from_pretrained(model_ckpt)
|
67 |
tokenizer = AutoTokenizer.from_pretrained(model_ckpt)
|
|
|
83 |
return audio
|
84 |
|
85 |
def transcribe(Microphone, File_Upload):
|
86 |
+
processor = WhisperProcessor.from_pretrained(model_id)
|
87 |
+
model = WhisperForConditionalGeneration.from_pretrained(model_id)
|
88 |
+
model.eval()
|
89 |
+
model.to(device)
|
90 |
+
|
91 |
+
sampling_rate = processor.feature_extractor.sampling_rate
|
92 |
+
|
93 |
+
bos_token_id = processor.tokenizer.all_special_ids[-106]
|
94 |
+
decoder_input_ids = torch.tensor([bos_token_id]).to(device)
|
95 |
+
|
96 |
warn_output = ""
|
97 |
if (Microphone is not None) and (File_Upload is not None):
|
98 |
warn_output = "WARNING: You've uploaded an audio file and used the microphone. " \
|