Spaces:
Sleeping
Sleeping
File size: 4,546 Bytes
53ef34c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
import torch
import torch.nn as nn
class ContextEmbedding(nn.Module):
def __init__(self, vocab_size, embedding_dim):
super(ContextEmbedding, self).__init__()
self.embedd_fc1 = nn.Embedding(vocab_size, embedding_dim)
self.fc1 = nn.Linear(embedding_dim, embedding_dim)
def forward(self, x):
x = self.embedd_fc1(x)
x = self.fc1(x)
return x
class TimeEbedding(nn.Module):
def __init__(self, time_dim, hidden_dim, out_dim):
super(TimeEbedding, self).__init__()
self.fc1 = nn.Linear(time_dim, hidden_dim)
self.gelu = nn.GELU()
self.fc2 = nn.Linear(hidden_dim, out_dim)
def forward(self, x):
x = self.fc1(x)
x = self.gelu(x)
x = self.fc2(x)
return x
class ConvBlock(nn.Module):
def __init__(self, in_channels, out_channels, vocab_size, embedding_dim , residual=False):
super(ConvBlock, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, 2, padding="same")
self.conv2 = nn.Conv2d(out_channels, out_channels, 2, padding="same")
self.downsample = nn.Conv2d(in_channels, out_channels, 3, padding="same", bias=False)
self.relu = nn.ReLU()
self.bn = nn.BatchNorm2d(out_channels)
self.te = TimeEbedding(1, out_channels, out_channels)
self.context_embedding = ContextEmbedding(vocab_size, embedding_dim)
self.__residual = residual
def forward(self, x, t, context):
x1 = self.downsample(x)
x = self.conv1(x)
x = self.relu(x)
x = self.conv2(x)
x = self.relu(x)
time_embedding = self.te(t)[:, :, None, None]
context = self.context_embedding(context)[:, :, None, None]
if self.__residual:
return self.bn(x + x1) * context + time_embedding
return x * context + time_embedding
class UNET(nn.Module):
def __init__(self, in_channels, out_channels, residual=False):
super(UNET, self).__init__()
self.convBD1 = ConvBlock(in_channels, 64, 5, 64,residual)
self.convBD2 = ConvBlock(64, 128, 5, 128,residual)
self.convBD3 = ConvBlock(128, 256, 5, 256,residual)
# self.convBD4 = ConvBlock(256, 512, 5, 512,residual)
self.bottle_neck = ConvBlock(256, 512, 5, 512,residual)
# self.bottle_neck = ConvBlock(512, 1024, 5, 1024,residual)
# self.convBU1 = ConvBlock(1024, 512, 5, 512,residual)
self.convBU2 = ConvBlock(512, 256, 5, 256,residual)
self.convBU3 = ConvBlock(256, 128, 5, 128,residual)
self.convBU4 = ConvBlock(128, 64, 5, 64,residual)
self.convT1 = nn.ConvTranspose2d(1024, 512, 2, 2)
self.convT2 = nn.ConvTranspose2d(512, 256, 2, 2)
self.convT3 = nn.ConvTranspose2d(256, 128, 2, 2)
self.convT4 = nn.ConvTranspose2d(128, 64, 2, 2)
self.final = nn.Conv2d(64, out_channels, 1)
self.maxpool = nn.MaxPool2d(2)
def forward(self, x, t, context):
if x.ndim == 3:
x = x.unsqueeze(0)
x1 = self.convBD1(x, t, context)
x = self.maxpool(x1)
x2 = self.convBD2(x, t, context)
x = self.maxpool(x2)
x3 = self.convBD3(x, t, context)
x = self.maxpool(x3)
# x4 = self.convBD4(x, t, context)
# x = self.maxpool(x4)
x = self.bottle_neck(x, t, context)
# x = self.convT1(x)
# x = torch.cat([x4, x], dim=1)
# x = self.convBU1(x, t, context)
x = self.convT2(x)
x = torch.cat([x3, x], dim=1)
x = self.convBU2(x, t, context)
x = self.convT3(x)
x = torch.cat([x2, x], dim=1)
x = self.convBU3(x, t, context)
x = self.convT4(x)
x = torch.cat([x1, x], dim=1)
x = self.convBU4(x, t, context)
x = self.final(x)
return x
import torch
import torch.nn as nn
from model import UNET
from helper import DDPM, denoise_image
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
timesteps = 500
beta1 = 1e-4
beta2 = 0.02
betas = (beta2 - beta1) * torch.linspace(0, 1, timesteps + 1) + beta1
betas = betas.to(device)
alpha = 1.0 - betas
alpha_bar = torch.cumprod(alpha, dim=0).to(device)
model = UNET(3, 3,True)
model = model.to(device)
loss_fn = nn.MSELoss()
optim = torch.optim.Adam(model.parameters(), lr=1e-3)
sampler = DDPM(betas) |