Spaces:
Runtime error
Runtime error
# Adapted from diffusers.pipelines.stable_diffusion.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.py | |
import inspect | |
from typing import Any, Callable, Dict, List, Optional, Tuple, Union | |
import torch | |
from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer | |
from diffusers.image_processor import VaeImageProcessor | |
from diffusers.loaders import FromSingleFileMixin, LoraLoaderMixin, TextualInversionLoaderMixin | |
# from diffusers.models import AutoencoderKL, UNet2DConditionModel | |
from diffusers.models import AutoencoderKL | |
from diffusers.models.attention_processor import ( | |
AttnProcessor2_0, | |
LoRAAttnProcessor2_0, | |
LoRAXFormersAttnProcessor, | |
XFormersAttnProcessor, | |
) | |
from diffusers.schedulers import EulerDiscreteScheduler | |
from diffusers.utils import ( | |
is_accelerate_available, | |
is_accelerate_version, | |
logging, | |
randn_tensor, | |
replace_example_docstring, | |
) | |
from diffusers.pipelines.pipeline_utils import DiffusionPipeline | |
from diffusers.pipelines.stable_diffusion_xl.watermark import StableDiffusionXLWatermarker | |
### cutomized modules | |
import collections | |
from functools import partial | |
from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipelineOutput | |
from models.unet_2d_condition import UNet2DConditionModel | |
from utils.attention_utils import CrossAttentionLayers_XL | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0): | |
""" | |
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and | |
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4 | |
""" | |
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True) | |
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True) | |
# rescale the results from guidance (fixes overexposure) | |
noise_pred_rescaled = noise_cfg * (std_text / std_cfg) | |
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images | |
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg | |
return noise_cfg | |
class RegionDiffusionXL(DiffusionPipeline, FromSingleFileMixin): | |
r""" | |
Pipeline for text-to-image generation using Stable Diffusion. | |
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the | |
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) | |
In addition the pipeline inherits the following loading methods: | |
- *Textual-Inversion*: [`loaders.TextualInversionLoaderMixin.load_textual_inversion`] | |
- *LoRA*: [`loaders.LoraLoaderMixin.load_lora_weights`] | |
- *Ckpt*: [`loaders.FromSingleFileMixin.from_single_file`] | |
as well as the following saving methods: | |
- *LoRA*: [`loaders.LoraLoaderMixin.save_lora_weights`] | |
Args: | |
vae ([`AutoencoderKL`]): | |
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. | |
text_encoder ([`CLIPTextModel`]): | |
Frozen text-encoder. Stable Diffusion uses the text portion of | |
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically | |
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. | |
tokenizer (`CLIPTokenizer`): | |
Tokenizer of class | |
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). | |
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. | |
scheduler ([`SchedulerMixin`]): | |
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of | |
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. | |
""" | |
def __init__( | |
self, | |
load_path: str = "stabilityai/stable-diffusion-xl-base-1.0", | |
device: str = "cuda", | |
force_zeros_for_empty_prompt: bool = True, | |
): | |
super().__init__() | |
# self.register_modules( | |
# vae=vae, | |
# text_encoder=text_encoder, | |
# text_encoder_2=text_encoder_2, | |
# tokenizer=tokenizer, | |
# tokenizer_2=tokenizer_2, | |
# unet=unet, | |
# scheduler=scheduler, | |
# ) | |
# 1. Load the autoencoder model which will be used to decode the latents into image space. | |
self.vae = AutoencoderKL.from_pretrained(load_path, subfolder="vae", torch_dtype=torch.float16, use_safetensors=True, variant="fp16").to(device) | |
# 2. Load the tokenizer and text encoder to tokenize and encode the text. | |
self.tokenizer = CLIPTokenizer.from_pretrained(load_path, subfolder='tokenizer') | |
self.tokenizer_2 = CLIPTokenizer.from_pretrained(load_path, subfolder='tokenizer_2') | |
self.text_encoder = CLIPTextModel.from_pretrained(load_path, subfolder='text_encoder', torch_dtype=torch.float16, use_safetensors=True, variant="fp16").to(device) | |
self.text_encoder_2 = CLIPTextModelWithProjection.from_pretrained(load_path, subfolder='text_encoder_2', torch_dtype=torch.float16, use_safetensors=True, variant="fp16").to(device) | |
# 3. The UNet model for generating the latents. | |
self.unet = UNet2DConditionModel.from_pretrained(load_path, subfolder="unet", torch_dtype=torch.float16, use_safetensors=True, variant="fp16").to(device) | |
# 4. Scheduler. | |
self.scheduler = EulerDiscreteScheduler.from_pretrained(load_path, subfolder="scheduler") | |
self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt) | |
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) | |
self.default_sample_size = self.unet.config.sample_size | |
self.watermark = StableDiffusionXLWatermarker() | |
self.device_type = device | |
self.masks = [] | |
self.attention_maps = None | |
self.selfattn_maps = None | |
self.crossattn_maps = None | |
self.color_loss = torch.nn.functional.mse_loss | |
self.forward_hooks = [] | |
self.forward_replacement_hooks = [] | |
# Overwriting the method from diffusers.pipelines.diffusion_pipeline.DiffusionPipeline | |
def device(self) -> torch.device: | |
r""" | |
Returns: | |
`torch.device`: The torch device on which the pipeline is located. | |
""" | |
return torch.device(self.device_type) | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing | |
def enable_vae_slicing(self): | |
r""" | |
Enable sliced VAE decoding. | |
When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several | |
steps. This is useful to save some memory and allow larger batch sizes. | |
""" | |
self.vae.enable_slicing() | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing | |
def disable_vae_slicing(self): | |
r""" | |
Disable sliced VAE decoding. If `enable_vae_slicing` was previously invoked, this method will go back to | |
computing decoding in one step. | |
""" | |
self.vae.disable_slicing() | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_tiling | |
def enable_vae_tiling(self): | |
r""" | |
Enable tiled VAE decoding. | |
When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in | |
several steps. This is useful to save a large amount of memory and to allow the processing of larger images. | |
""" | |
self.vae.enable_tiling() | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_tiling | |
def disable_vae_tiling(self): | |
r""" | |
Disable tiled VAE decoding. If `enable_vae_tiling` was previously invoked, this method will go back to | |
computing decoding in one step. | |
""" | |
self.vae.disable_tiling() | |
def enable_sequential_cpu_offload(self, gpu_id=0): | |
r""" | |
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet, | |
text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a | |
`torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called. | |
Note that offloading happens on a submodule basis. Memory savings are higher than with | |
`enable_model_cpu_offload`, but performance is lower. | |
""" | |
if is_accelerate_available() and is_accelerate_version(">=", "0.14.0"): | |
from accelerate import cpu_offload | |
else: | |
raise ImportError("`enable_sequential_cpu_offload` requires `accelerate v0.14.0` or higher") | |
device = torch.device(f"cuda:{gpu_id}") | |
if self.device.type != "cpu": | |
self.to("cpu", silence_dtype_warnings=True) | |
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) | |
for cpu_offloaded_model in [self.unet, self.text_encoder, self.text_encoder_2, self.vae]: | |
cpu_offload(cpu_offloaded_model, device) | |
def enable_model_cpu_offload(self, gpu_id=0): | |
r""" | |
Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared | |
to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward` | |
method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with | |
`enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`. | |
""" | |
if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"): | |
from accelerate import cpu_offload_with_hook | |
else: | |
raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.") | |
device = torch.device(f"cuda:{gpu_id}") | |
if self.device.type != "cpu": | |
self.to("cpu", silence_dtype_warnings=True) | |
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) | |
model_sequence = ( | |
[self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2] | |
) | |
model_sequence.extend([self.unet, self.vae]) | |
hook = None | |
for cpu_offloaded_model in model_sequence: | |
_, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook) | |
# We'll offload the last model manually. | |
self.final_offload_hook = hook | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device | |
def _execution_device(self): | |
r""" | |
Returns the device on which the pipeline's models will be executed. After calling | |
`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module | |
hooks. | |
""" | |
if not hasattr(self.unet, "_hf_hook"): | |
return self.device | |
for module in self.unet.modules(): | |
if ( | |
hasattr(module, "_hf_hook") | |
and hasattr(module._hf_hook, "execution_device") | |
and module._hf_hook.execution_device is not None | |
): | |
return torch.device(module._hf_hook.execution_device) | |
return self.device | |
def encode_prompt( | |
self, | |
prompt, | |
device: Optional[torch.device] = None, | |
num_images_per_prompt: int = 1, | |
do_classifier_free_guidance: bool = True, | |
negative_prompt=None, | |
prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
lora_scale: Optional[float] = None, | |
): | |
r""" | |
Encodes the prompt into text encoder hidden states. | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
prompt to be encoded | |
device: (`torch.device`): | |
torch device | |
num_images_per_prompt (`int`): | |
number of images that should be generated per prompt | |
do_classifier_free_guidance (`bool`): | |
whether to use classifier free guidance or not | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
less than `1`). | |
prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
provided, text embeddings will be generated from `prompt` input argument. | |
negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
argument. | |
pooled_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. | |
If not provided, pooled text embeddings will be generated from `prompt` input argument. | |
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` | |
input argument. | |
lora_scale (`float`, *optional*): | |
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. | |
""" | |
device = device or self._execution_device | |
# set lora scale so that monkey patched LoRA | |
# function of text encoder can correctly access it | |
if lora_scale is not None and isinstance(self, LoraLoaderMixin): | |
self._lora_scale = lora_scale | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
batch_size_neg = len(negative_prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
# Define tokenizers and text encoders | |
tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2] | |
text_encoders = ( | |
[self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2] | |
) | |
if prompt_embeds is None: | |
# textual inversion: procecss multi-vector tokens if necessary | |
prompt_embeds_list = [] | |
for tokenizer, text_encoder in zip(tokenizers, text_encoders): | |
if isinstance(self, TextualInversionLoaderMixin): | |
prompt = self.maybe_convert_prompt(prompt, tokenizer) | |
text_inputs = tokenizer( | |
prompt, | |
padding="max_length", | |
max_length=tokenizer.model_max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
text_input_ids = text_inputs.input_ids | |
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | |
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( | |
text_input_ids, untruncated_ids | |
): | |
removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1]) | |
logger.warning( | |
"The following part of your input was truncated because CLIP can only handle sequences up to" | |
f" {tokenizer.model_max_length} tokens: {removed_text}" | |
) | |
prompt_embeds = text_encoder( | |
text_input_ids.to(device), | |
output_hidden_states=True, | |
) | |
# We are only ALWAYS interested in the pooled output of the final text encoder | |
pooled_prompt_embeds = prompt_embeds[0] | |
prompt_embeds = prompt_embeds.hidden_states[-2] | |
bs_embed, seq_len, _ = prompt_embeds.shape | |
# duplicate text embeddings for each generation per prompt, using mps friendly method | |
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
prompt_embeds_list.append(prompt_embeds) | |
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1) | |
# get unconditional embeddings for classifier free guidance | |
zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt | |
if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt: | |
negative_prompt_embeds = torch.zeros_like(prompt_embeds) | |
negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds) | |
elif do_classifier_free_guidance and negative_prompt_embeds is None: | |
negative_prompt = negative_prompt or "" | |
uncond_tokens: List[str] | |
if prompt is not None and type(prompt) is not type(negative_prompt): | |
raise TypeError( | |
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
f" {type(prompt)}." | |
) | |
elif isinstance(negative_prompt, str): | |
uncond_tokens = [negative_prompt] | |
# elif batch_size != len(negative_prompt): | |
# raise ValueError( | |
# f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
# f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
# " the batch size of `prompt`." | |
# ) | |
else: | |
uncond_tokens = negative_prompt | |
negative_prompt_embeds_list = [] | |
for tokenizer, text_encoder in zip(tokenizers, text_encoders): | |
# textual inversion: procecss multi-vector tokens if necessary | |
if isinstance(self, TextualInversionLoaderMixin): | |
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, tokenizer) | |
max_length = prompt_embeds.shape[1] | |
uncond_input = tokenizer( | |
uncond_tokens, | |
padding="max_length", | |
max_length=max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
negative_prompt_embeds = text_encoder( | |
uncond_input.input_ids.to(device), | |
output_hidden_states=True, | |
) | |
# We are only ALWAYS interested in the pooled output of the final text encoder | |
negative_pooled_prompt_embeds = negative_prompt_embeds[0] | |
negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2] | |
if do_classifier_free_guidance: | |
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
seq_len = negative_prompt_embeds.shape[1] | |
negative_prompt_embeds = negative_prompt_embeds.to(dtype=text_encoder.dtype, device=device) | |
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
negative_prompt_embeds = negative_prompt_embeds.view( | |
batch_size_neg * num_images_per_prompt, seq_len, -1 | |
) | |
# For classifier free guidance, we need to do two forward passes. | |
# Here we concatenate the unconditional and text embeddings into a single batch | |
# to avoid doing two forward passes | |
negative_prompt_embeds_list.append(negative_prompt_embeds) | |
negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1) | |
bs_embed = pooled_prompt_embeds.shape[0] | |
pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view( | |
bs_embed * num_images_per_prompt, -1 | |
) | |
bs_embed = negative_pooled_prompt_embeds.shape[0] | |
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view( | |
bs_embed * num_images_per_prompt, -1 | |
) | |
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs | |
def prepare_extra_step_kwargs(self, generator, eta): | |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
# eta (Ξ·) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
# eta corresponds to Ξ· in DDIM paper: https://arxiv.org/abs/2010.02502 | |
# and should be between [0, 1] | |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
extra_step_kwargs = {} | |
if accepts_eta: | |
extra_step_kwargs["eta"] = eta | |
# check if the scheduler accepts generator | |
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
if accepts_generator: | |
extra_step_kwargs["generator"] = generator | |
return extra_step_kwargs | |
def check_inputs( | |
self, | |
prompt, | |
height, | |
width, | |
callback_steps, | |
negative_prompt=None, | |
prompt_embeds=None, | |
negative_prompt_embeds=None, | |
pooled_prompt_embeds=None, | |
negative_pooled_prompt_embeds=None, | |
): | |
if height % 8 != 0 or width % 8 != 0: | |
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | |
if (callback_steps is None) or ( | |
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) | |
): | |
raise ValueError( | |
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | |
f" {type(callback_steps)}." | |
) | |
if prompt is not None and prompt_embeds is not None: | |
raise ValueError( | |
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
" only forward one of the two." | |
) | |
elif prompt is None and prompt_embeds is None: | |
raise ValueError( | |
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | |
) | |
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): | |
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
if negative_prompt is not None and negative_prompt_embeds is not None: | |
raise ValueError( | |
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" | |
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
) | |
if prompt_embeds is not None and negative_prompt_embeds is not None: | |
if prompt_embeds.shape != negative_prompt_embeds.shape: | |
raise ValueError( | |
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" | |
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" | |
f" {negative_prompt_embeds.shape}." | |
) | |
if prompt_embeds is not None and pooled_prompt_embeds is None: | |
raise ValueError( | |
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`." | |
) | |
if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None: | |
raise ValueError( | |
"If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`." | |
) | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents | |
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): | |
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor) | |
if isinstance(generator, list) and len(generator) != batch_size: | |
raise ValueError( | |
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
) | |
if latents is None: | |
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
else: | |
latents = latents.to(device) | |
# scale the initial noise by the standard deviation required by the scheduler | |
latents = latents * self.scheduler.init_noise_sigma | |
return latents | |
def _get_add_time_ids(self, original_size, crops_coords_top_left, target_size, dtype): | |
add_time_ids = list(original_size + crops_coords_top_left + target_size) | |
passed_add_embed_dim = ( | |
self.unet.config.addition_time_embed_dim * len(add_time_ids) + self.text_encoder_2.config.projection_dim | |
) | |
expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features | |
if expected_add_embed_dim != passed_add_embed_dim: | |
raise ValueError( | |
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`." | |
) | |
add_time_ids = torch.tensor([add_time_ids], dtype=dtype) | |
return add_time_ids | |
def sample( | |
self, | |
prompt: Union[str, List[str]] = None, | |
height: Optional[int] = None, | |
width: Optional[int] = None, | |
num_inference_steps: int = 50, | |
guidance_scale: float = 5.0, | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
num_images_per_prompt: Optional[int] = 1, | |
eta: float = 0.0, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.FloatTensor] = None, | |
prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
callback_steps: int = 1, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
guidance_rescale: float = 0.0, | |
original_size: Optional[Tuple[int, int]] = None, | |
crops_coords_top_left: Tuple[int, int] = (0, 0), | |
target_size: Optional[Tuple[int, int]] = None, | |
# Rich-Text args | |
use_guidance: bool = False, | |
inject_selfattn: float = 0.0, | |
inject_background: float = 0.0, | |
text_format_dict: Optional[dict] = None, | |
run_rich_text: bool = False, | |
): | |
r""" | |
Function invoked when calling the pipeline for generation. | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. | |
instead. | |
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
The height in pixels of the generated image. | |
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
The width in pixels of the generated image. | |
num_inference_steps (`int`, *optional*, defaults to 50): | |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. | |
guidance_scale (`float`, *optional*, defaults to 7.5): | |
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
`guidance_scale` is defined as `w` of equation 2. of [Imagen | |
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
usually at the expense of lower image quality. | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
less than `1`). | |
num_images_per_prompt (`int`, *optional*, defaults to 1): | |
The number of images to generate per prompt. | |
eta (`float`, *optional*, defaults to 0.0): | |
Corresponds to parameter eta (Ξ·) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to | |
[`schedulers.DDIMScheduler`], will be ignored for others. | |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
to make generation deterministic. | |
latents (`torch.FloatTensor`, *optional*): | |
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
tensor will ge generated by sampling using the supplied random `generator`. | |
prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
provided, text embeddings will be generated from `prompt` input argument. | |
negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
argument. | |
pooled_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. | |
If not provided, pooled text embeddings will be generated from `prompt` input argument. | |
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` | |
input argument. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generate image. Choose between | |
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] instead of a | |
plain tuple. | |
callback (`Callable`, *optional*): | |
A function that will be called every `callback_steps` steps during inference. The function will be | |
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. | |
callback_steps (`int`, *optional*, defaults to 1): | |
The frequency at which the `callback` function will be called. If not specified, the callback will be | |
called at every step. | |
cross_attention_kwargs (`dict`, *optional*): | |
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | |
`self.processor` in | |
[diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py). | |
guidance_rescale (`float`, *optional*, defaults to 0.7): | |
Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are | |
Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `Ο` in equation 16. of | |
[Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). | |
Guidance rescale factor should fix overexposure when using zero terminal SNR. | |
original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): | |
TODO | |
crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)): | |
TODO | |
target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): | |
TODO | |
Examples: | |
Returns: | |
[`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] or `tuple`: | |
[`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a | |
`tuple. When returning a tuple, the first element is a list with the generated images, and the second | |
element is a list of `bool`s denoting whether the corresponding generated image likely represents | |
"not-safe-for-work" (nsfw) content, according to the `safety_checker`. | |
""" | |
# 0. Default height and width to unet | |
height = height or self.default_sample_size * self.vae_scale_factor | |
width = width or self.default_sample_size * self.vae_scale_factor | |
original_size = original_size or (height, width) | |
target_size = target_size or (height, width) | |
# 1. Check inputs. Raise error if not correct | |
self.check_inputs( | |
prompt, | |
height, | |
width, | |
callback_steps, | |
negative_prompt, | |
prompt_embeds, | |
negative_prompt_embeds, | |
pooled_prompt_embeds, | |
negative_pooled_prompt_embeds, | |
) | |
# 2. Define call parameters | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
# TODO: support batched prompts | |
batch_size = 1 | |
# batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
device = self._execution_device | |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
# corresponds to doing no classifier free guidance. | |
do_classifier_free_guidance = guidance_scale > 1.0 | |
# 3. Encode input prompt | |
text_encoder_lora_scale = ( | |
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None | |
) | |
( | |
prompt_embeds, | |
negative_prompt_embeds, | |
pooled_prompt_embeds, | |
negative_pooled_prompt_embeds, | |
) = self.encode_prompt( | |
prompt, | |
device, | |
num_images_per_prompt, | |
do_classifier_free_guidance, | |
negative_prompt, | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
pooled_prompt_embeds=pooled_prompt_embeds, | |
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
lora_scale=text_encoder_lora_scale, | |
) | |
# 4. Prepare timesteps | |
self.scheduler.set_timesteps(num_inference_steps, device=device) | |
timesteps = self.scheduler.timesteps | |
# 5. Prepare latent variables | |
num_channels_latents = self.unet.config.in_channels | |
latents = self.prepare_latents( | |
batch_size * num_images_per_prompt, | |
num_channels_latents, | |
height, | |
width, | |
prompt_embeds.dtype, | |
device, | |
generator, | |
latents, | |
) | |
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
# 7. Prepare added time ids & embeddings | |
add_text_embeds = pooled_prompt_embeds | |
add_time_ids = self._get_add_time_ids( | |
original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype | |
) | |
if do_classifier_free_guidance: | |
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) | |
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0) | |
add_time_ids = torch.cat([add_time_ids, add_time_ids], dim=0) | |
prompt_embeds = prompt_embeds.to(device) | |
add_text_embeds = add_text_embeds.to(device) | |
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1) | |
# 8. Denoising loop | |
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
if run_rich_text: | |
if inject_selfattn > 0 or inject_background > 0: | |
latents_reference = latents.clone().detach() | |
n_styles = prompt_embeds.shape[0]-1 | |
self.masks = [mask.to(dtype=prompt_embeds.dtype) for mask in self.masks] | |
print(n_styles, len(self.masks)) | |
with self.progress_bar(total=num_inference_steps) as progress_bar: | |
for i, t in enumerate(self.scheduler.timesteps): | |
# predict the noise residual | |
with torch.no_grad(): | |
feat_inject_step = t > (1-inject_selfattn) * 1000 | |
background_inject_step = i < inject_background * len(self.scheduler.timesteps) | |
latent_model_input = self.scheduler.scale_model_input(latents, t) | |
# import ipdb;ipdb.set_trace() | |
# unconditional prediction | |
noise_pred_uncond_cur = self.unet(latent_model_input, t, encoder_hidden_states=prompt_embeds[:1], | |
cross_attention_kwargs=cross_attention_kwargs, | |
added_cond_kwargs={"text_embeds": add_text_embeds[:1], "time_ids": add_time_ids[:1]} | |
)['sample'] | |
# tokens without any style or footnote | |
self.register_fontsize_hooks(text_format_dict) | |
noise_pred_text_cur = self.unet(latent_model_input, t, encoder_hidden_states=prompt_embeds[-1:], | |
cross_attention_kwargs=cross_attention_kwargs, | |
added_cond_kwargs={"text_embeds": add_text_embeds[-1:], "time_ids": add_time_ids[:1]} | |
)['sample'] | |
self.remove_fontsize_hooks() | |
if inject_selfattn > 0 or inject_background > 0: | |
latent_reference_model_input = self.scheduler.scale_model_input(latents_reference, t) | |
noise_pred_uncond_refer = self.unet(latent_reference_model_input, t, encoder_hidden_states=prompt_embeds[:1], | |
cross_attention_kwargs=cross_attention_kwargs, | |
added_cond_kwargs={"text_embeds": add_text_embeds[:1], "time_ids": add_time_ids[:1]} | |
)['sample'] | |
self.register_selfattn_hooks(feat_inject_step) | |
noise_pred_text_refer = self.unet(latent_reference_model_input, t, encoder_hidden_states=prompt_embeds[-1:], | |
cross_attention_kwargs=cross_attention_kwargs, | |
added_cond_kwargs={"text_embeds": add_text_embeds[-1:], "time_ids": add_time_ids[:1]} | |
)['sample'] | |
self.remove_selfattn_hooks() | |
noise_pred_uncond = noise_pred_uncond_cur * self.masks[-1] | |
noise_pred_text = noise_pred_text_cur * self.masks[-1] | |
# tokens with style or footnote | |
for style_i, mask in enumerate(self.masks[:-1]): | |
self.register_replacement_hooks(feat_inject_step) | |
noise_pred_text_cur = self.unet(latent_model_input, t, encoder_hidden_states=prompt_embeds[style_i+1:style_i+2], | |
cross_attention_kwargs=cross_attention_kwargs, | |
added_cond_kwargs={"text_embeds": add_text_embeds[style_i+1:style_i+2], "time_ids": add_time_ids[:1]} | |
)['sample'] | |
self.remove_replacement_hooks() | |
noise_pred_uncond = noise_pred_uncond + noise_pred_uncond_cur*mask | |
noise_pred_text = noise_pred_text + noise_pred_text_cur*mask | |
# perform guidance | |
noise_pred = noise_pred_uncond + guidance_scale * \ | |
(noise_pred_text - noise_pred_uncond) | |
if do_classifier_free_guidance and guidance_rescale > 0.0: | |
# TODO: Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf | |
# noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale) | |
raise NotImplementedError | |
if inject_selfattn > 0 or background_inject_step > 0: | |
noise_pred_refer = noise_pred_uncond_refer + guidance_scale * \ | |
(noise_pred_text_refer - noise_pred_uncond_refer) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents_reference = self.scheduler.step(torch.cat([noise_pred, noise_pred_refer]), t, | |
torch.cat([latents, latents_reference]))[ | |
'prev_sample'] | |
latents, latents_reference = torch.chunk( | |
latents_reference, 2, dim=0) | |
else: | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = self.scheduler.step(noise_pred, t, latents)[ | |
'prev_sample'] | |
# apply guidance | |
if use_guidance and t < text_format_dict['guidance_start_step']: | |
with torch.enable_grad(): | |
self.unet.to(device='cpu') | |
torch.cuda.empty_cache() | |
if not latents.requires_grad: | |
latents.requires_grad = True | |
# import ipdb;ipdb.set_trace() | |
# latents_0 = self.predict_x0(latents, noise_pred, t).to(dtype=latents.dtype) | |
latents_0 = self.predict_x0(latents, noise_pred, t).to(dtype=torch.bfloat16) | |
latents_inp = latents_0 / self.vae.config.scaling_factor | |
imgs = self.vae.to(dtype=latents_inp.dtype).decode(latents_inp).sample | |
# imgs = self.vae.decode(latents_inp.to(dtype=torch.float32)).sample | |
imgs = (imgs / 2 + 0.5).clamp(0, 1) | |
loss_total = 0. | |
for attn_map, rgb_val in zip(text_format_dict['color_obj_atten'], text_format_dict['target_RGB']): | |
avg_rgb = ( | |
imgs*attn_map[:, 0]).sum(2).sum(2)/attn_map[:, 0].sum() | |
loss = self.color_loss( | |
avg_rgb, rgb_val[:, :, 0, 0])*100 | |
loss_total += loss | |
loss_total.backward() | |
latents = ( | |
latents - latents.grad * text_format_dict['color_guidance_weight'] * text_format_dict['color_obj_atten_all']).detach().clone().to(dtype=prompt_embeds.dtype) | |
self.unet.to(device=latents.device) | |
# apply background injection | |
if i == int(inject_background * len(self.scheduler.timesteps)) and inject_background > 0: | |
latents = latents_reference * self.masks[-1] + latents * \ | |
(1-self.masks[-1]) | |
# call the callback, if provided | |
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
progress_bar.update() | |
if callback is not None and i % callback_steps == 0: | |
callback(i, t, latents) | |
else: | |
with self.progress_bar(total=num_inference_steps) as progress_bar: | |
for i, t in enumerate(timesteps): | |
# expand the latents if we are doing classifier free guidance | |
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
# predict the noise residual | |
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids} | |
noise_pred = self.unet( | |
latent_model_input, | |
t, | |
encoder_hidden_states=prompt_embeds, | |
cross_attention_kwargs=cross_attention_kwargs, | |
added_cond_kwargs=added_cond_kwargs, | |
return_dict=False, | |
)[0] | |
# perform guidance | |
if do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
if do_classifier_free_guidance and guidance_rescale > 0.0: | |
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf | |
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] | |
# call the callback, if provided | |
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
progress_bar.update() | |
if callback is not None and i % callback_steps == 0: | |
callback(i, t, latents) | |
# make sure the VAE is in float32 mode, as it overflows in float16 | |
self.vae.to(dtype=torch.float32) | |
use_torch_2_0_or_xformers = isinstance( | |
self.vae.decoder.mid_block.attentions[0].processor, | |
( | |
AttnProcessor2_0, | |
XFormersAttnProcessor, | |
LoRAXFormersAttnProcessor, | |
LoRAAttnProcessor2_0, | |
), | |
) | |
# if xformers or torch_2_0 is used attention block does not need | |
# to be in float32 which can save lots of memory | |
if use_torch_2_0_or_xformers: | |
self.vae.post_quant_conv.to(latents.dtype) | |
self.vae.decoder.conv_in.to(latents.dtype) | |
self.vae.decoder.mid_block.to(latents.dtype) | |
else: | |
latents = latents.float() | |
if not output_type == "latent": | |
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] | |
else: | |
image = latents | |
return StableDiffusionXLPipelineOutput(images=image) | |
image = self.watermark.apply_watermark(image) | |
image = self.image_processor.postprocess(image, output_type=output_type) | |
# Offload last model to CPU | |
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: | |
self.final_offload_hook.offload() | |
if not return_dict: | |
return (image,) | |
return StableDiffusionXLPipelineOutput(images=image) | |
def predict_x0(self, x_t, eps_t, t): | |
alpha_t = self.scheduler.alphas_cumprod[t.cpu().long().item()] | |
return (x_t - eps_t * torch.sqrt(1-alpha_t)) / torch.sqrt(alpha_t) | |
def register_tokenmap_hooks(self): | |
r"""Function for registering hooks during evaluation. | |
We mainly store activation maps averaged over queries. | |
""" | |
self.forward_hooks = [] | |
def save_activations(selfattn_maps, crossattn_maps, n_maps, name, module, inp, out): | |
r""" | |
PyTorch Forward hook to save outputs at each forward pass. | |
""" | |
# out[0] - final output of attention layer | |
# out[1] - attention probability matrices | |
if name in n_maps: | |
n_maps[name] += 1 | |
else: | |
n_maps[name] = 1 | |
if 'attn2' in name: | |
assert out[1][0].shape[-1] == 77 | |
if name in CrossAttentionLayers_XL and n_maps[name] > 10: | |
# if n_maps[name] > 10: | |
if name in crossattn_maps: | |
crossattn_maps[name] += out[1][0].detach().cpu()[1:2] | |
else: | |
crossattn_maps[name] = out[1][0].detach().cpu()[1:2] | |
# For visualization | |
# crossattn_maps[name].append(out[1][0].detach().cpu()[1:2]) | |
else: | |
assert out[1][0].shape[-1] != 77 | |
# if name in SelfAttentionLayers and n_maps[name] > 10: | |
if n_maps[name] > 10: | |
if name in selfattn_maps: | |
selfattn_maps[name] += out[1][0].detach().cpu()[1:2] | |
else: | |
selfattn_maps[name] = out[1][0].detach().cpu()[1:2] | |
selfattn_maps = collections.defaultdict(list) | |
crossattn_maps = collections.defaultdict(list) | |
n_maps = collections.defaultdict(list) | |
for name, module in self.unet.named_modules(): | |
leaf_name = name.split('.')[-1] | |
if 'attn' in leaf_name: | |
# Register hook to obtain outputs at every attention layer. | |
self.forward_hooks.append(module.register_forward_hook( | |
partial(save_activations, selfattn_maps, | |
crossattn_maps, n_maps, name) | |
)) | |
# attention_dict is a dictionary containing attention maps for every attention layer | |
self.selfattn_maps = selfattn_maps | |
self.crossattn_maps = crossattn_maps | |
self.n_maps = n_maps | |
def remove_tokenmap_hooks(self): | |
for hook in self.forward_hooks: | |
hook.remove() | |
self.selfattn_maps = None | |
self.crossattn_maps = None | |
self.n_maps = None | |
def register_replacement_hooks(self, feat_inject_step=False): | |
r"""Function for registering hooks to replace self attention. | |
""" | |
self.forward_replacement_hooks = [] | |
def replace_activations(name, module, args): | |
r""" | |
PyTorch Forward hook to save outputs at each forward pass. | |
""" | |
if 'attn1' in name: | |
modified_args = (args[0], self.self_attention_maps_cur[name].to(args[0].device)) | |
return modified_args | |
# cross attention injection | |
# elif 'attn2' in name: | |
# modified_map = { | |
# 'reference': self.self_attention_maps_cur[name], | |
# 'inject_pos': self.inject_pos, | |
# } | |
# modified_args = (args[0], modified_map) | |
# return modified_args | |
def replace_resnet_activations(name, module, args): | |
r""" | |
PyTorch Forward hook to save outputs at each forward pass. | |
""" | |
modified_args = (args[0], args[1], | |
self.self_attention_maps_cur[name].to(args[0].device)) | |
return modified_args | |
for name, module in self.unet.named_modules(): | |
leaf_name = name.split('.')[-1] | |
if 'attn' in leaf_name and feat_inject_step: | |
# Register hook to obtain outputs at every attention layer. | |
self.forward_replacement_hooks.append(module.register_forward_pre_hook( | |
partial(replace_activations, name) | |
)) | |
if name == 'up_blocks.1.resnets.1' and feat_inject_step: | |
# Register hook to obtain outputs at every attention layer. | |
self.forward_replacement_hooks.append(module.register_forward_pre_hook( | |
partial(replace_resnet_activations, name) | |
)) | |
def remove_replacement_hooks(self): | |
for hook in self.forward_replacement_hooks: | |
hook.remove() | |
def register_selfattn_hooks(self, feat_inject_step=False): | |
r"""Function for registering hooks during evaluation. | |
We mainly store activation maps averaged over queries. | |
""" | |
self.selfattn_forward_hooks = [] | |
def save_activations(activations, name, module, inp, out): | |
r""" | |
PyTorch Forward hook to save outputs at each forward pass. | |
""" | |
# out[0] - final output of attention layer | |
# out[1] - attention probability matrix | |
if 'attn2' in name: | |
assert out[1][1].shape[-1] == 77 | |
# cross attention injection | |
# activations[name] = out[1][1].detach() | |
else: | |
assert out[1][1].shape[-1] != 77 | |
activations[name] = out[1][1].detach().cpu() | |
def save_resnet_activations(activations, name, module, inp, out): | |
r""" | |
PyTorch Forward hook to save outputs at each forward pass. | |
""" | |
# out[0] - final output of residual layer | |
# out[1] - residual hidden feature | |
# import ipdb;ipdb.set_trace() | |
assert out[1].shape[-1] == 64 | |
activations[name] = out[1].detach().cpu() | |
attention_dict = collections.defaultdict(list) | |
for name, module in self.unet.named_modules(): | |
leaf_name = name.split('.')[-1] | |
if 'attn' in leaf_name and feat_inject_step: | |
# Register hook to obtain outputs at every attention layer. | |
self.selfattn_forward_hooks.append(module.register_forward_hook( | |
partial(save_activations, attention_dict, name) | |
)) | |
if name == 'up_blocks.1.resnets.1' and feat_inject_step: | |
self.selfattn_forward_hooks.append(module.register_forward_hook( | |
partial(save_resnet_activations, attention_dict, name) | |
)) | |
# attention_dict is a dictionary containing attention maps for every attention layer | |
self.self_attention_maps_cur = attention_dict | |
def remove_selfattn_hooks(self): | |
for hook in self.selfattn_forward_hooks: | |
hook.remove() | |
def register_fontsize_hooks(self, text_format_dict={}): | |
r"""Function for registering hooks to replace self attention. | |
""" | |
self.forward_fontsize_hooks = [] | |
def adjust_attn_weights(name, module, args): | |
r""" | |
PyTorch Forward hook to save outputs at each forward pass. | |
""" | |
if 'attn2' in name: | |
modified_args = (args[0], None, attn_weights) | |
return modified_args | |
if text_format_dict['word_pos'] is not None and text_format_dict['font_size'] is not None: | |
attn_weights = {'word_pos': text_format_dict['word_pos'], 'font_size': text_format_dict['font_size']} | |
else: | |
attn_weights = None | |
for name, module in self.unet.named_modules(): | |
leaf_name = name.split('.')[-1] | |
if 'attn' in leaf_name and attn_weights is not None: | |
# Register hook to obtain outputs at every attention layer. | |
self.forward_fontsize_hooks.append(module.register_forward_pre_hook( | |
partial(adjust_attn_weights, name) | |
)) | |
def remove_fontsize_hooks(self): | |
for hook in self.forward_fontsize_hooks: | |
hook.remove() |