Spaces:
No application file
No application file
""" | |
WaveGRU model: melspectrogram => mu-law encoded waveform | |
""" | |
from typing import Tuple | |
import jax | |
import jax.numpy as jnp | |
import pax | |
from pax import GRUState | |
from tqdm.cli import tqdm | |
class ReLU(pax.Module): | |
def __call__(self, x): | |
return jax.nn.relu(x) | |
def dilated_residual_conv_block(dim, kernel, stride, dilation): | |
""" | |
Use dilated convs to enlarge the receptive field | |
""" | |
return pax.Sequential( | |
pax.Conv1D(dim, dim, kernel, stride, dilation, "VALID", with_bias=False), | |
pax.LayerNorm(dim, -1, True, True), | |
ReLU(), | |
pax.Conv1D(dim, dim, 1, 1, 1, "VALID", with_bias=False), | |
pax.LayerNorm(dim, -1, True, True), | |
ReLU(), | |
) | |
def tile_1d(x, factor): | |
""" | |
Tile tensor of shape N, L, D into N, L*factor, D | |
""" | |
N, L, D = x.shape | |
x = x[:, :, None, :] | |
x = jnp.tile(x, (1, 1, factor, 1)) | |
x = jnp.reshape(x, (N, L * factor, D)) | |
return x | |
def up_block(in_dim, out_dim, factor, relu=True): | |
""" | |
Tile >> Conv >> BatchNorm >> ReLU | |
""" | |
f = pax.Sequential( | |
lambda x: tile_1d(x, factor), | |
pax.Conv1D( | |
in_dim, out_dim, 2 * factor, stride=1, padding="VALID", with_bias=False | |
), | |
pax.LayerNorm(out_dim, -1, True, True), | |
) | |
if relu: | |
f >>= ReLU() | |
return f | |
class Upsample(pax.Module): | |
""" | |
Upsample melspectrogram to match raw audio sample rate. | |
""" | |
def __init__( | |
self, input_dim, hidden_dim, rnn_dim, upsample_factors, has_linear_output=False | |
): | |
super().__init__() | |
self.input_conv = pax.Sequential( | |
pax.Conv1D(input_dim, hidden_dim, 1, with_bias=False), | |
pax.LayerNorm(hidden_dim, -1, True, True), | |
) | |
self.upsample_factors = upsample_factors | |
self.dilated_convs = [ | |
dilated_residual_conv_block(hidden_dim, 3, 1, 2**i) for i in range(5) | |
] | |
self.up_factors = upsample_factors[:-1] | |
self.up_blocks = [ | |
up_block(hidden_dim, hidden_dim, x) for x in self.up_factors[:-1] | |
] | |
self.up_blocks.append( | |
up_block( | |
hidden_dim, | |
hidden_dim if has_linear_output else 3 * rnn_dim, | |
self.up_factors[-1], | |
relu=False, | |
) | |
) | |
if has_linear_output: | |
self.x2zrh_fc = pax.Linear(hidden_dim, rnn_dim * 3) | |
self.has_linear_output = has_linear_output | |
self.final_tile = upsample_factors[-1] | |
def __call__(self, x, no_repeat=False): | |
x = self.input_conv(x) | |
for residual in self.dilated_convs: | |
y = residual(x) | |
pad = (x.shape[1] - y.shape[1]) // 2 | |
x = x[:, pad:-pad, :] + y | |
for f in self.up_blocks: | |
x = f(x) | |
if self.has_linear_output: | |
x = self.x2zrh_fc(x) | |
if no_repeat: | |
return x | |
x = tile_1d(x, self.final_tile) | |
return x | |
class GRU(pax.Module): | |
""" | |
A customized GRU module. | |
""" | |
input_dim: int | |
hidden_dim: int | |
def __init__(self, hidden_dim: int): | |
super().__init__() | |
self.hidden_dim = hidden_dim | |
self.h_zrh_fc = pax.Linear( | |
hidden_dim, | |
hidden_dim * 3, | |
w_init=jax.nn.initializers.variance_scaling( | |
1, "fan_out", "truncated_normal" | |
), | |
) | |
def initial_state(self, batch_size: int) -> GRUState: | |
"""Create an all zeros initial state.""" | |
return GRUState(jnp.zeros((batch_size, self.hidden_dim), dtype=jnp.float32)) | |
def __call__(self, state: GRUState, x) -> Tuple[GRUState, jnp.ndarray]: | |
hidden = state.hidden | |
x_zrh = x | |
h_zrh = self.h_zrh_fc(hidden) | |
x_zr, x_h = jnp.split(x_zrh, [2 * self.hidden_dim], axis=-1) | |
h_zr, h_h = jnp.split(h_zrh, [2 * self.hidden_dim], axis=-1) | |
zr = x_zr + h_zr | |
zr = jax.nn.sigmoid(zr) | |
z, r = jnp.split(zr, 2, axis=-1) | |
h_hat = x_h + r * h_h | |
h_hat = jnp.tanh(h_hat) | |
h = (1 - z) * hidden + z * h_hat | |
return GRUState(h), h | |
class Pruner(pax.Module): | |
""" | |
Base class for pruners | |
""" | |
def compute_sparsity(self, step): | |
t = jnp.power(1 - (step * 1.0 - 1_000) / 200_000, 3) | |
z = 0.95 * jnp.clip(1.0 - t, a_min=0, a_max=1) | |
return z | |
def prune(self, step, weights): | |
""" | |
Return a mask | |
""" | |
z = self.compute_sparsity(step) | |
x = weights | |
H, W = x.shape | |
x = x.reshape(H // 4, 4, W // 4, 4) | |
x = jnp.abs(x) | |
x = jnp.sum(x, axis=(1, 3), keepdims=True) | |
q = jnp.quantile(jnp.reshape(x, (-1,)), z) | |
x = x >= q | |
x = jnp.tile(x, (1, 4, 1, 4)) | |
x = jnp.reshape(x, (H, W)) | |
return x | |
class GRUPruner(Pruner): | |
def __init__(self, gru): | |
super().__init__() | |
self.h_zrh_fc_mask = jnp.ones_like(gru.h_zrh_fc.weight) == 1 | |
def __call__(self, gru: pax.GRU): | |
""" | |
Apply mask after an optimization step | |
""" | |
zrh_masked_weights = jnp.where(self.h_zrh_fc_mask, gru.h_zrh_fc.weight, 0) | |
gru = gru.replace_node(gru.h_zrh_fc.weight, zrh_masked_weights) | |
return gru | |
def update_mask(self, step, gru: pax.GRU): | |
""" | |
Update internal masks | |
""" | |
z_weight, r_weight, h_weight = jnp.split(gru.h_zrh_fc.weight, 3, axis=1) | |
z_mask = self.prune(step, z_weight) | |
r_mask = self.prune(step, r_weight) | |
h_mask = self.prune(step, h_weight) | |
self.h_zrh_fc_mask *= jnp.concatenate((z_mask, r_mask, h_mask), axis=1) | |
class LinearPruner(Pruner): | |
def __init__(self, linear): | |
super().__init__() | |
self.mask = jnp.ones_like(linear.weight) == 1 | |
def __call__(self, linear: pax.Linear): | |
""" | |
Apply mask after an optimization step | |
""" | |
return linear.replace(weight=jnp.where(self.mask, linear.weight, 0)) | |
def update_mask(self, step, linear: pax.Linear): | |
""" | |
Update internal masks | |
""" | |
self.mask *= self.prune(step, linear.weight) | |
class WaveGRU(pax.Module): | |
""" | |
WaveGRU vocoder model. | |
""" | |
def __init__( | |
self, | |
mel_dim=80, | |
rnn_dim=1024, | |
upsample_factors=(5, 3, 20), | |
has_linear_output=False, | |
): | |
super().__init__() | |
self.embed = pax.Embed(256, 3 * rnn_dim) | |
self.upsample = Upsample( | |
input_dim=mel_dim, | |
hidden_dim=512, | |
rnn_dim=rnn_dim, | |
upsample_factors=upsample_factors, | |
has_linear_output=has_linear_output, | |
) | |
self.rnn = GRU(rnn_dim) | |
self.o1 = pax.Linear(rnn_dim, rnn_dim) | |
self.o2 = pax.Linear(rnn_dim, 256) | |
self.gru_pruner = GRUPruner(self.rnn) | |
self.o1_pruner = LinearPruner(self.o1) | |
self.o2_pruner = LinearPruner(self.o2) | |
def output(self, x): | |
x = self.o1(x) | |
x = jax.nn.relu(x) | |
x = self.o2(x) | |
return x | |
def inference(self, mel, no_gru=False, seed=42): | |
""" | |
generate waveform form melspectrogram | |
""" | |
def step(rnn_state, mel, rng_key, x): | |
x = self.embed(x) | |
x = x + mel | |
rnn_state, x = self.rnn(rnn_state, x) | |
x = self.output(x) | |
rng_key, next_rng_key = jax.random.split(rng_key, 2) | |
x = jax.random.categorical(rng_key, x, axis=-1) | |
return rnn_state, next_rng_key, x | |
y = self.upsample(mel, no_repeat=no_gru) | |
if no_gru: | |
return y | |
x = jnp.array([127], dtype=jnp.int32) | |
rnn_state = self.rnn.initial_state(1) | |
output = [] | |
rng_key = jax.random.PRNGKey(seed) | |
for i in tqdm(range(y.shape[1])): | |
rnn_state, rng_key, x = step(rnn_state, y[:, i], rng_key, x) | |
output.append(x) | |
x = jnp.concatenate(output, axis=0) | |
return x | |
def __call__(self, mel, x): | |
x = self.embed(x) | |
y = self.upsample(mel) | |
pad_left = (x.shape[1] - y.shape[1]) // 2 | |
pad_right = x.shape[1] - y.shape[1] - pad_left | |
x = x[:, pad_left:-pad_right] | |
x = x + y | |
_, x = pax.scan( | |
self.rnn, | |
self.rnn.initial_state(x.shape[0]), | |
x, | |
time_major=False, | |
) | |
x = self.output(x) | |
return x | |