File size: 7,044 Bytes
fa104b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
from html import escape
import re
import streamlit as st
import pandas as pd, numpy as np
from transformers import CLIPProcessor, CLIPModel
from st_clickable_images import clickable_images

@st.cache(
    show_spinner=False,
    hash_funcs={
        CLIPModel: lambda _: None,
        CLIPProcessor: lambda _: None,
        dict: lambda _: None,
    },
)
def load():
    model = CLIPModel.from_pretrained("openai/clip-vit-large-patch14")
    processor = CLIPProcessor.from_pretrained("openai/clip-vit-large-patch14")
    df = {0: pd.read_csv("data.csv"), 1: pd.read_csv("data2.csv")}
    embeddings = {0: np.load("embeddings.npy"), 1: np.load("embeddings2.npy")}
    for k in [0, 1]:
        embeddings[k] = embeddings[k] / np.linalg.norm(
            embeddings[k], axis=1, keepdims=True
        )
    return model, processor, df, embeddings


model, processor, df, embeddings = load()
source = {0: "\nSource: Unsplash", 1: "\nSource: The Movie Database (TMDB)"}


def compute_text_embeddings(list_of_strings):
    inputs = processor(text=list_of_strings, return_tensors="pt", padding=True)
    result = model.get_text_features(**inputs).detach().numpy()
    return result / np.linalg.norm(result, axis=1, keepdims=True)


def image_search(query, corpus, n_results=24):
    positive_embeddings = None

    def concatenate_embeddings(e1, e2):
        if e1 is None:
            return e2
        else:
            return np.concatenate((e1, e2), axis=0)

    splitted_query = query.split("EXCLUDING ")
    dot_product = 0
    k = 0 if corpus == "Unsplash" else 1
    if len(splitted_query[0]) > 0:
        positive_queries = splitted_query[0].split(";")
        for positive_query in positive_queries:
            match = re.match(r"\[(Movies|Unsplash):(\d{1,5})\](.*)", positive_query)
            if match:
                corpus2, idx, remainder = match.groups()
                idx, remainder = int(idx), remainder.strip()
                k2 = 0 if corpus2 == "Unsplash" else 1
                positive_embeddings = concatenate_embeddings(
                    positive_embeddings, embeddings[k2][idx : idx + 1, :]
                )
                if len(remainder) > 0:
                    positive_embeddings = concatenate_embeddings(
                        positive_embeddings, compute_text_embeddings([remainder])
                    )
            else:
                positive_embeddings = concatenate_embeddings(
                    positive_embeddings, compute_text_embeddings([positive_query])
                )
        dot_product = embeddings[k] @ positive_embeddings.T
        dot_product = dot_product - np.median(dot_product, axis=0)
        dot_product = dot_product / np.max(dot_product, axis=0, keepdims=True)
        dot_product = np.min(dot_product, axis=1)

    if len(splitted_query) > 1:
        negative_queries = (" ".join(splitted_query[1:])).split(";")
        negative_embeddings = compute_text_embeddings(negative_queries)
        dot_product2 = embeddings[k] @ negative_embeddings.T
        dot_product2 = dot_product2 - np.median(dot_product2, axis=0)
        dot_product2 = dot_product2 / np.max(dot_product2, axis=0, keepdims=True)
        dot_product -= np.max(np.maximum(dot_product2, 0), axis=1)

    results = np.argsort(dot_product)[-1 : -n_results - 1 : -1]
    return [
        (
            df[k].iloc[i]["path"],
            df[k].iloc[i]["tooltip"] + source[k],
            i,
        )
        for i in results
    ]


description = """
# Semantic image search
**Enter your query and hit enter**
"""

howto = """
- Click image to find similar images
- Use "**;**" to combine multiple queries)
- Use "**EXCLUDING**", to exclude a query
"""


def main():
    st.markdown(
        """
              <style>
              .block-container{
                max-width: 1200px;
              }
              div.row-widget.stRadio > div{
                flex-direction:row;
                display: flex;
                justify-content: center;
              }
              div.row-widget.stRadio > div > label{
                margin-left: 5px;
                margin-right: 5px;
              }
              section.main>div:first-child {
                padding-top: 0px;
              }
              section:not(.main)>div:first-child {
                padding-top: 30px;
              }
              div.reportview-container > section:first-child{
                max-width: 320px;
              }
              #MainMenu {
                visibility: hidden;
              }
              footer {
                visibility: hidden;
              }
              </style>""",
        unsafe_allow_html=True,
    )
    st.sidebar.markdown(description)
    with st.sidebar.expander("Advanced use"):
        st.markdown(howto)


    st.sidebar.markdown(f"Unsplash has categories that match: backgrounds, photos, nature, iphone, etc")
    st.sidebar.markdown(f"Unsplash images contain animals, apps, events, feelings, food, travel, nature, people, religion, sports, things, stock")
    st.sidebar.markdown(f"Unsplash things include flag, tree, clock, money, tattoo, arrow, book, car, fireworks, ghost, health, kiss, dance, balloon, crown, eye, house, music, airplane, lighthouse, typewriter, toys")
    st.sidebar.markdown(f"unsplash feelings include funny, heart, love, cool, congratulations, love, scary, cute, friendship, inspirational, hug, sad, cursed, beautiful, crazy, respect, transformation, peaceful, happy")
    st.sidebar.markdown(f"unsplash people contain baby, life, women, family, girls, pregnancy, society, old people, musician, attractive, bohemian")
    st.sidebar.markdown(f"imagenet queries include: photo of, photo of many, sculpture of, rendering of, graffiti of, tattoo of, embroidered, drawing of, plastic, black and white, painting, video game, doodle, origami, sketch, etc")
    
    
    _, c, _ = st.columns((1, 3, 1))
    if "query" in st.session_state:
        query = c.text_input("", value=st.session_state["query"])
    else:

        query = c.text_input("", value="lighthouse")
    corpus = st.radio("", ["Unsplash"])
    #corpus = st.radio("", ["Unsplash", "Movies"])
    if len(query) > 0:
        results = image_search(query, corpus)
        clicked = clickable_images(
            [result[0] for result in results],
            titles=[result[1] for result in results],
            div_style={
                "display": "flex",
                "justify-content": "center",
                "flex-wrap": "wrap",
            },
            img_style={"margin": "2px", "height": "200px"},
        )
        if clicked >= 0:
            change_query = False
            if "last_clicked" not in st.session_state:
                change_query = True
            else:
                if clicked != st.session_state["last_clicked"]:
                    change_query = True
            if change_query:
                st.session_state["query"] = f"[{corpus}:{results[clicked][2]}]"
                st.experimental_rerun()


if __name__ == "__main__":
    main()