Spaces:
Runtime error
Runtime error
File size: 7,044 Bytes
fa104b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
from html import escape
import re
import streamlit as st
import pandas as pd, numpy as np
from transformers import CLIPProcessor, CLIPModel
from st_clickable_images import clickable_images
@st.cache(
show_spinner=False,
hash_funcs={
CLIPModel: lambda _: None,
CLIPProcessor: lambda _: None,
dict: lambda _: None,
},
)
def load():
model = CLIPModel.from_pretrained("openai/clip-vit-large-patch14")
processor = CLIPProcessor.from_pretrained("openai/clip-vit-large-patch14")
df = {0: pd.read_csv("data.csv"), 1: pd.read_csv("data2.csv")}
embeddings = {0: np.load("embeddings.npy"), 1: np.load("embeddings2.npy")}
for k in [0, 1]:
embeddings[k] = embeddings[k] / np.linalg.norm(
embeddings[k], axis=1, keepdims=True
)
return model, processor, df, embeddings
model, processor, df, embeddings = load()
source = {0: "\nSource: Unsplash", 1: "\nSource: The Movie Database (TMDB)"}
def compute_text_embeddings(list_of_strings):
inputs = processor(text=list_of_strings, return_tensors="pt", padding=True)
result = model.get_text_features(**inputs).detach().numpy()
return result / np.linalg.norm(result, axis=1, keepdims=True)
def image_search(query, corpus, n_results=24):
positive_embeddings = None
def concatenate_embeddings(e1, e2):
if e1 is None:
return e2
else:
return np.concatenate((e1, e2), axis=0)
splitted_query = query.split("EXCLUDING ")
dot_product = 0
k = 0 if corpus == "Unsplash" else 1
if len(splitted_query[0]) > 0:
positive_queries = splitted_query[0].split(";")
for positive_query in positive_queries:
match = re.match(r"\[(Movies|Unsplash):(\d{1,5})\](.*)", positive_query)
if match:
corpus2, idx, remainder = match.groups()
idx, remainder = int(idx), remainder.strip()
k2 = 0 if corpus2 == "Unsplash" else 1
positive_embeddings = concatenate_embeddings(
positive_embeddings, embeddings[k2][idx : idx + 1, :]
)
if len(remainder) > 0:
positive_embeddings = concatenate_embeddings(
positive_embeddings, compute_text_embeddings([remainder])
)
else:
positive_embeddings = concatenate_embeddings(
positive_embeddings, compute_text_embeddings([positive_query])
)
dot_product = embeddings[k] @ positive_embeddings.T
dot_product = dot_product - np.median(dot_product, axis=0)
dot_product = dot_product / np.max(dot_product, axis=0, keepdims=True)
dot_product = np.min(dot_product, axis=1)
if len(splitted_query) > 1:
negative_queries = (" ".join(splitted_query[1:])).split(";")
negative_embeddings = compute_text_embeddings(negative_queries)
dot_product2 = embeddings[k] @ negative_embeddings.T
dot_product2 = dot_product2 - np.median(dot_product2, axis=0)
dot_product2 = dot_product2 / np.max(dot_product2, axis=0, keepdims=True)
dot_product -= np.max(np.maximum(dot_product2, 0), axis=1)
results = np.argsort(dot_product)[-1 : -n_results - 1 : -1]
return [
(
df[k].iloc[i]["path"],
df[k].iloc[i]["tooltip"] + source[k],
i,
)
for i in results
]
description = """
# Semantic image search
**Enter your query and hit enter**
"""
howto = """
- Click image to find similar images
- Use "**;**" to combine multiple queries)
- Use "**EXCLUDING**", to exclude a query
"""
def main():
st.markdown(
"""
<style>
.block-container{
max-width: 1200px;
}
div.row-widget.stRadio > div{
flex-direction:row;
display: flex;
justify-content: center;
}
div.row-widget.stRadio > div > label{
margin-left: 5px;
margin-right: 5px;
}
section.main>div:first-child {
padding-top: 0px;
}
section:not(.main)>div:first-child {
padding-top: 30px;
}
div.reportview-container > section:first-child{
max-width: 320px;
}
#MainMenu {
visibility: hidden;
}
footer {
visibility: hidden;
}
</style>""",
unsafe_allow_html=True,
)
st.sidebar.markdown(description)
with st.sidebar.expander("Advanced use"):
st.markdown(howto)
st.sidebar.markdown(f"Unsplash has categories that match: backgrounds, photos, nature, iphone, etc")
st.sidebar.markdown(f"Unsplash images contain animals, apps, events, feelings, food, travel, nature, people, religion, sports, things, stock")
st.sidebar.markdown(f"Unsplash things include flag, tree, clock, money, tattoo, arrow, book, car, fireworks, ghost, health, kiss, dance, balloon, crown, eye, house, music, airplane, lighthouse, typewriter, toys")
st.sidebar.markdown(f"unsplash feelings include funny, heart, love, cool, congratulations, love, scary, cute, friendship, inspirational, hug, sad, cursed, beautiful, crazy, respect, transformation, peaceful, happy")
st.sidebar.markdown(f"unsplash people contain baby, life, women, family, girls, pregnancy, society, old people, musician, attractive, bohemian")
st.sidebar.markdown(f"imagenet queries include: photo of, photo of many, sculpture of, rendering of, graffiti of, tattoo of, embroidered, drawing of, plastic, black and white, painting, video game, doodle, origami, sketch, etc")
_, c, _ = st.columns((1, 3, 1))
if "query" in st.session_state:
query = c.text_input("", value=st.session_state["query"])
else:
query = c.text_input("", value="lighthouse")
corpus = st.radio("", ["Unsplash"])
#corpus = st.radio("", ["Unsplash", "Movies"])
if len(query) > 0:
results = image_search(query, corpus)
clicked = clickable_images(
[result[0] for result in results],
titles=[result[1] for result in results],
div_style={
"display": "flex",
"justify-content": "center",
"flex-wrap": "wrap",
},
img_style={"margin": "2px", "height": "200px"},
)
if clicked >= 0:
change_query = False
if "last_clicked" not in st.session_state:
change_query = True
else:
if clicked != st.session_state["last_clicked"]:
change_query = True
if change_query:
st.session_state["query"] = f"[{corpus}:{results[clicked][2]}]"
st.experimental_rerun()
if __name__ == "__main__":
main() |