using model directly
Browse files
app.py
CHANGED
@@ -1,12 +1,18 @@
|
|
1 |
import torch
|
2 |
-
from transformers import
|
3 |
import gradio as gr
|
4 |
|
5 |
-
|
|
|
|
|
6 |
|
7 |
def greet(name):
|
8 |
-
res = pipe(name, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
|
9 |
-
|
|
|
|
|
|
|
|
|
10 |
|
11 |
iface = gr.Interface(fn=greet, inputs="text", outputs="text")
|
12 |
iface.launch()
|
|
|
1 |
import torch
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
import gradio as gr
|
4 |
|
5 |
+
# Load model directly
|
6 |
+
tokenizer = AutoTokenizer.from_pretrained("MTSAIR/multi_verse_model")
|
7 |
+
model = AutoModelForCausalLM.from_pretrained("MTSAIR/multi_verse_model")
|
8 |
|
9 |
def greet(name):
|
10 |
+
#i want to get same result res = pipe(name, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
|
11 |
+
#but using tokenizer and model
|
12 |
+
input_ids = tokenizer.encode(name, return_tensors='pt')
|
13 |
+
res = model.generate(input_ids, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
|
14 |
+
generated = tokenizer.decode(res[0], skip_special_tokens=True)
|
15 |
+
return generated
|
16 |
|
17 |
iface = gr.Interface(fn=greet, inputs="text", outputs="text")
|
18 |
iface.launch()
|