Update app.py
Browse files
app.py
CHANGED
@@ -57,7 +57,7 @@ pipe_i2i = AutoPipelineForImage2Image.from_pretrained(
|
|
57 |
text_encoder_2=pipe.text_encoder_2,
|
58 |
tokenizer_2=pipe.tokenizer_2,
|
59 |
torch_dtype=dtype
|
60 |
-
)
|
61 |
|
62 |
# 업스케일링을 위한 ControlNet 모델 로드
|
63 |
controlnet = FluxControlNetModel.from_pretrained(
|
@@ -74,10 +74,7 @@ pipe_controlnet = FluxControlNetPipeline(
|
|
74 |
controlnet=controlnet,
|
75 |
scheduler=pipe.scheduler
|
76 |
# 'safety_checker'와 'feature_extractor'는 제거됨
|
77 |
-
).to(device)
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
|
82 |
MAX_SEED = 2**32 - 1
|
83 |
MAX_PIXEL_BUDGET = 1024 * 1024
|
@@ -667,11 +664,19 @@ with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css, delete_cache=(60, 3600)) as a
|
|
667 |
fn=run_lora,
|
668 |
inputs=[prompt, input_image, image_strength, cfg_scale, steps, selected_indices, lora_scale_1, lora_scale_2, randomize_seed, seed, width, height, loras_state],
|
669 |
outputs=[result, seed, progress_bar]
|
|
|
|
|
|
|
|
|
670 |
)
|
671 |
prompt.submit(
|
672 |
fn=run_lora,
|
673 |
inputs=[prompt, input_image, image_strength, cfg_scale, steps, selected_indices, lora_scale_1, lora_scale_2, randomize_seed, seed, width, height, loras_state],
|
674 |
outputs=[result, seed, progress_bar]
|
|
|
|
|
|
|
|
|
675 |
)
|
676 |
gallery.select(
|
677 |
fn=update_selection,
|
@@ -703,11 +708,6 @@ with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css, delete_cache=(60, 3600)) as a
|
|
703 |
inputs=[selected_indices, loras_state],
|
704 |
outputs=[loras_state, gallery, selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2]
|
705 |
)
|
706 |
-
history_gallery.load(
|
707 |
-
fn=update_history,
|
708 |
-
inputs=[result, history_gallery],
|
709 |
-
outputs=history_gallery
|
710 |
-
)
|
711 |
|
712 |
with gr.Tab("Upscale"):
|
713 |
with gr.Row():
|
@@ -763,3 +763,4 @@ with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css, delete_cache=(60, 3600)) as a
|
|
763 |
app.queue()
|
764 |
app.launch()
|
765 |
|
|
|
|
57 |
text_encoder_2=pipe.text_encoder_2,
|
58 |
tokenizer_2=pipe.tokenizer_2,
|
59 |
torch_dtype=dtype
|
60 |
+
).to(device)
|
61 |
|
62 |
# 업스케일링을 위한 ControlNet 모델 로드
|
63 |
controlnet = FluxControlNetModel.from_pretrained(
|
|
|
74 |
controlnet=controlnet,
|
75 |
scheduler=pipe.scheduler
|
76 |
# 'safety_checker'와 'feature_extractor'는 제거됨
|
77 |
+
).to(device) # 'torch_dtype' 제거
|
|
|
|
|
|
|
78 |
|
79 |
MAX_SEED = 2**32 - 1
|
80 |
MAX_PIXEL_BUDGET = 1024 * 1024
|
|
|
664 |
fn=run_lora,
|
665 |
inputs=[prompt, input_image, image_strength, cfg_scale, steps, selected_indices, lora_scale_1, lora_scale_2, randomize_seed, seed, width, height, loras_state],
|
666 |
outputs=[result, seed, progress_bar]
|
667 |
+
).then( # Update the history gallery
|
668 |
+
fn=lambda x, history: update_history(x, history),
|
669 |
+
inputs=[result, history_gallery],
|
670 |
+
outputs=history_gallery,
|
671 |
)
|
672 |
prompt.submit(
|
673 |
fn=run_lora,
|
674 |
inputs=[prompt, input_image, image_strength, cfg_scale, steps, selected_indices, lora_scale_1, lora_scale_2, randomize_seed, seed, width, height, loras_state],
|
675 |
outputs=[result, seed, progress_bar]
|
676 |
+
).then( # Update the history gallery
|
677 |
+
fn=lambda x, history: update_history(x, history),
|
678 |
+
inputs=[result, history_gallery],
|
679 |
+
outputs=history_gallery,
|
680 |
)
|
681 |
gallery.select(
|
682 |
fn=update_selection,
|
|
|
708 |
inputs=[selected_indices, loras_state],
|
709 |
outputs=[loras_state, gallery, selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2]
|
710 |
)
|
|
|
|
|
|
|
|
|
|
|
711 |
|
712 |
with gr.Tab("Upscale"):
|
713 |
with gr.Row():
|
|
|
763 |
app.queue()
|
764 |
app.launch()
|
765 |
|
766 |
+
|