import gradio as gr from huggingface_hub import InferenceClient import string import numpy as np from transformers import AutoTokenizer import onnxruntime as ort import os # Initialize client and models client = InferenceClient(api_key=os.environ.get('HF_TOKEN')) # Constants for EOU calculation PUNCS = string.punctuation.replace("'", "") MAX_HISTORY = 4 MAX_HISTORY_TOKENS = 1024 EOU_THRESHOLD = 0.5 # Initialize tokenizer and ONNX session HG_MODEL = "livekit/turn-detector" ONNX_FILENAME = "model_quantized.onnx" tokenizer = AutoTokenizer.from_pretrained(HG_MODEL) onnx_session = ort.InferenceSession(ONNX_FILENAME, providers=["CPUExecutionProvider"]) # Helper functions for EOU def softmax(logits): exp_logits = np.exp(logits - np.max(logits)) return exp_logits / np.sum(exp_logits) def normalize_text(text): def strip_puncs(text): return text.translate(str.maketrans("", "", PUNCS)) return " ".join(strip_puncs(text).lower().split()) def format_chat_ctx(chat_ctx): new_chat_ctx = [] for msg in chat_ctx: if msg["role"] in ("user", "assistant"): content = normalize_text(msg["content"]) if content: msg["content"] = content new_chat_ctx.append(msg) convo_text = tokenizer.apply_chat_template( new_chat_ctx, add_generation_prompt=False, add_special_tokens=False, tokenize=False ) ix = convo_text.rfind("<|im_end|>") return convo_text[:ix] def calculate_eou(chat_ctx, session): formatted_text = format_chat_ctx(chat_ctx[-MAX_HISTORY:]) inputs = tokenizer( formatted_text, return_tensors="np", truncation=True, max_length=MAX_HISTORY_TOKENS, ) input_ids = np.array(inputs["input_ids"], dtype=np.int64) outputs = session.run(["logits"], {"input_ids": input_ids}) logits = outputs[0][0, -1, :] probs = softmax(logits) eou_token_id = tokenizer.encode("<|im_end|>")[-1] return probs[eou_token_id] messages = [] def chatbot(user_input): global messages # Exit condition if user_input.lower() == "exit": messages = [] # Reset conversation history return "Chat ended. Refresh the page to start again." # Add user message to conversation history messages.append({"role": "user", "content": user_input}) # Calculate EOU to determine if user has finished typing eou_prob = calculate_eou(messages, onnx_session) if eou_prob < EOU_THRESHOLD: yield "[I'm waiting for you to complete the sentence...]" return # Stream the chatbot's response stream = client.chat.completions.create( model="deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B", messages=messages, temperature=0.6, max_tokens=1024, top_p=0.95, stream=True ) bot_response = "" for chunk in stream: bot_response += chunk.choices[0].delta.content yield bot_response # Add final bot response to conversation history messages.append({"role": "assistant", "content": bot_response}) # Create Gradio interface with gr.Blocks(theme='darkdefault') as demo: gr.Markdown("""# Chat with DeepSeek-R1 Type your message below to interact with the chatbot. Type "exit" to end the conversation. """) with gr.Row(): with gr.Column(): user_input = gr.Textbox(label="Your Message", placeholder="Type your message here...") submit_button = gr.Button("Send") with gr.Column(): chat_output = gr.Textbox(label="Chatbot Response", interactive=False) # Define interactions submit_button.click(chatbot, inputs=[user_input], outputs=[chat_output]) # Launch the app demo.launch()