import requests from PIL import Image from transformers import AutoProcessor, AutoModelForVision2Seq model = AutoModelForVision2Seq.from_pretrained("microsoft/kosmos-2-patch14-224") processor = AutoProcessor.from_pretrained("microsoft/kosmos-2-patch14-224") prompt = "An image of" url = "https://huggingface.co/microsoft/kosmos-2-patch14-224/resolve/main/snowman.png" image = Image.open(requests.get(url, stream=True).raw) # The original Kosmos-2 demo saves the image first then reload it. For some images, this will give slightly different image input and change the generation outputs. image.save("new_image.jpg") image = Image.open("new_image.jpg") inputs = processor(text=prompt, images=image, return_tensors="pt") generated_ids = model.generate( pixel_values=inputs["pixel_values"], input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], image_embeds=None, image_embeds_position_mask=inputs["image_embeds_position_mask"], use_cache=True, max_new_tokens=128, ) generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] # Specify `cleanup_and_extract=False` in order to see the raw model generation. processed_text = processor.post_process_generation(generated_text, cleanup_and_extract=False) print(processed_text) # ` An image of a snowman warming himself by a fire.` # By default, the generated text is cleanup and the entities are extracted. processed_text, entities = processor.post_process_generation(generated_text) print(processed_text) # `An image of a snowman warming himself by a fire.` print(entities) # `[('a snowman', (12, 21), [(0.390625, 0.046875, 0.984375, 0.828125)]), ('a fire', (41, 47), [(0.171875, 0.015625, 0.484375, 0.890625)])]`