import gradio as gr import numpy as np import h5py import faiss import json from transformers import AutoTokenizer, AutoModel from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.pairwise import cosine_similarity import re import spacy import torch import nltk # Download WordNet data nltk.download('wordnet') # Load Spacy model for advanced NLP try: nlp = spacy.load("en_core_web_sm") except IOError: print("Downloading spacy model...") spacy.cli.download("en_core_web_sm") nlp = spacy.load("en_core_web_sm") def load_data(): try: with h5py.File('patent_embeddings.h5', 'r') as f: embeddings = f['embeddings'][:] patent_numbers = f['patent_numbers'][:] metadata = {} texts = [] with open('patent_metadata.jsonl', 'r') as f: for line in f: data = json.loads(line) metadata[data['patent_number']] = data texts.append(data['text']) print(f"Embedding shape: {embeddings.shape}") print(f"Number of patent numbers: {len(patent_numbers)}") print(f"Number of metadata entries: {len(metadata)}") return embeddings, patent_numbers, metadata, texts except FileNotFoundError as e: print(f"Error: Could not find file. {e}") raise except Exception as e: print(f"An unexpected error occurred while loading data: {e}") raise embeddings, patent_numbers, metadata, texts = load_data() # Load BERT model for encoding search queries tokenizer = AutoTokenizer.from_pretrained('anferico/bert-for-patents') bert_model = AutoModel.from_pretrained('anferico/bert-for-patents') def encode_texts(texts, max_length=512): inputs = tokenizer(texts, padding=True, truncation=True, max_length=max_length, return_tensors='pt') with torch.no_grad(): outputs = bert_model(**inputs) embeddings = outputs.last_hidden_state.mean(dim=1) return embeddings.numpy() # Check if the embedding dimensions match if embeddings.shape[1] != encode_texts(["test"]).shape[1]: print("Embedding dimensions do not match. Rebuilding FAISS index.") # Rebuild embeddings using the new model embeddings = encode_texts(texts) embeddings = embeddings / np.linalg.norm(embeddings, axis=1, keepdims=True) # Normalize embeddings for cosine similarity embeddings = embeddings / np.linalg.norm(embeddings, axis=1, keepdims=True) # Create FAISS index for cosine similarity index = faiss.IndexFlatIP(embeddings.shape[1]) index.add(embeddings) # Create TF-IDF vectorizer tfidf_vectorizer = TfidfVectorizer(stop_words='english') tfidf_matrix = tfidf_vectorizer.fit_transform(texts) def extract_key_features(text): # Use Spacy to extract technical terms and phrases doc = nlp(text) technical_terms = [] for token in doc: if token.dep_ in ('amod', 'compound') or token.ent_type_ in ('PRODUCT', 'ORG', 'GPE', 'NORP'): technical_terms.append(token.text.lower()) noun_phrases = [chunk.text.lower() for chunk in doc.noun_chunks] feature_phrases = [sent.text.lower() for sent in doc.sents if re.search(r'(comprising|including|consisting of|deformable|insulation|heat-resistant|memory foam|high-temperature)', sent.text, re.IGNORECASE)] all_features = technical_terms + noun_phrases + feature_phrases return list(set(all_features)) def compare_features(query_features, patent_features): common_features = set(query_features) & set(patent_features) similarity_score = len(common_features) / max(len(query_features), len(patent_features)) return common_features, similarity_score def hybrid_search(query, top_k=5): print(f"Original query: {query}") query_features = extract_key_features(query) # Encode the query using the transformer model query_embedding = encode_texts([query])[0] query_embedding = query_embedding / np.linalg.norm(query_embedding) # Perform semantic similarity search semantic_distances, semantic_indices = index.search(np.array([query_embedding]).astype('float32'), top_k * 2) # Perform TF-IDF based search query_tfidf = tfidf_vectorizer.transform([query]) tfidf_similarities = cosine_similarity(query_tfidf, tfidf_matrix).flatten() tfidf_indices = tfidf_similarities.argsort()[-top_k * 2:][::-1] # Combine and rank results combined_results = {} for i, idx in enumerate(semantic_indices[0]): patent_number = patent_numbers[idx].decode('utf-8') text = metadata[patent_number]['text'] patent_features = extract_key_features(text) common_features, feature_similarity = compare_features(query_features, patent_features) combined_results[patent_number] = { 'score': semantic_distances[0][i] * 1.0 + tfidf_similarities[idx] * 0.5 + feature_similarity, 'common_features': common_features, 'text': text } for idx in tfidf_indices: patent_number = patent_numbers[idx].decode('utf-8') if patent_number not in combined_results: text = metadata[patent_number]['text'] patent_features = extract_key_features(text) common_features, feature_similarity = compare_features(query_features, patent_features) combined_results[patent_number] = { 'score': tfidf_similarities[idx] * 1.0 + feature_similarity, 'common_features': common_features, 'text': text } # Sort and get top results top_results = sorted(combined_results.items(), key=lambda x: x[1]['score'], reverse=True)[:top_k] results = [] for patent_number, data in top_results: result = f"Patent Number: {patent_number}\n" result += f"Text: {data['text'][:200]}...\n" result += f"Combined Score: {data['score']:.4f}\n" result += f"Common Key Features: {', '.join(data['common_features'])}\n\n" results.append(result) return "\n".join(results) # Create Gradio interface with additional input fields iface = gr.Interface( fn=hybrid_search, inputs=[ gr.Textbox(lines=2, placeholder="Enter your patent query here..."), gr.Slider(minimum=1, maximum=20, step=1, value=5, label="Top K Results"), ], outputs=gr.Textbox(lines=10, label="Search Results"), title="Patent Similarity Search", description="Enter a patent description to find similar patents based on key features." ) if __name__ == "__main__": iface.launch()