bienom commited on
Commit
cde7e09
1 Parent(s): 7270adb
__pycache__/model.cpython-39.pyc ADDED
Binary file (3.81 kB). View file
 
__pycache__/utils.cpython-39.pyc ADDED
Binary file (5.59 kB). View file
 
app.py CHANGED
@@ -1,8 +1,65 @@
1
  import gradio as gr
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
 
3
- def predict(inp):
4
- return "Yaw: 30 \n Pitch: 19\n Direction: Left"
5
  gr.Interface(fn=predict,
6
  inputs=gr.Image(type="pil"),
7
  outputs=gr.Textbox(),
8
- examples=["face_left.jpg","face_right.jpg","face_up.jpg","face_down.jpg"]).launch()
 
1
  import gradio as gr
2
+ from model import SixDRepNet
3
+ import os
4
+
5
+ import numpy as np
6
+ import torch
7
+ from torchvision import transforms
8
+ import utils
9
+ import time
10
+
11
+ transformations = transforms.Compose([transforms.Resize(224),
12
+ transforms.CenterCrop(224),
13
+ transforms.ToTensor(),
14
+ transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
15
+
16
+ model = SixDRepNet(backbone_name='RepVGG-A0',
17
+ backbone_file='',
18
+ deploy=True,
19
+ pretrained=False)
20
+
21
+ saved_state_dict = torch.load(os.path.join(
22
+ "weights_ALFW_A0.pth"), map_location='cpu')
23
+
24
+ if 'model_state_dict' in saved_state_dict:
25
+ model.load_state_dict(saved_state_dict['model_state_dict'])
26
+ else:
27
+ model.load_state_dict(saved_state_dict)
28
+
29
+ # Test the Model
30
+ model.eval() # Change model to 'eval' mode (BN uses moving mean/var).
31
+
32
+ th = 15
33
+
34
+ def predict(img):
35
+
36
+ img = img.convert('RGB')
37
+ img = transformations(img).unsqueeze(0)
38
+ with torch.no_grad():
39
+ start = time.time()
40
+ R_pred = model(img)
41
+ end = time.time()
42
+ timemilis = (end - start)*1000
43
+
44
+ euler = utils.compute_euler_angles_from_rotation_matrices(
45
+ R_pred,use_gpu=False)*180/np.pi
46
+ p_pred_deg = euler[:, 0].cpu().item()
47
+ y_pred_deg = euler[:, 1].cpu().item()
48
+ direction_str = ""
49
+ if p_pred_deg > th:
50
+ direction_str = "UP "
51
+ elif p_pred_deg < th:
52
+ direction_str ="DOWN "
53
+
54
+ if y_pred_deg > th:
55
+ direction_str += "LEFT"
56
+ elif y_pred_deg < th:
57
+ direction_str += "RIGHT"
58
+
59
+ return f"Yaw: {y_pred_deg:0.1f} \n Pitch: {p_pred_deg:0.1f}\n Direction: {direction_str} \n Time: {timemilis:0.2f}ms"
60
+
61
 
 
 
62
  gr.Interface(fn=predict,
63
  inputs=gr.Image(type="pil"),
64
  outputs=gr.Textbox(),
65
+ examples=["face_left.jpg","face_right.jpg","face_up.jpg","face_down.jpg"]).launch(share=True)
backbone/__pycache__/repvgg.cpython-39.pyc ADDED
Binary file (9.5 kB). View file
 
backbone/__pycache__/se_block.cpython-39.pyc ADDED
Binary file (1.1 kB). View file
 
backbone/repvgg.py ADDED
@@ -0,0 +1,301 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import torch.nn as nn
3
+ import numpy as np
4
+ import torch
5
+ import copy
6
+ from backbone.se_block import SEBlock
7
+
8
+ def conv_bn(in_channels, out_channels, kernel_size, stride, padding, groups=1):
9
+ result = nn.Sequential()
10
+ result.add_module('conv', nn.Conv2d(in_channels=in_channels, out_channels=out_channels,
11
+ kernel_size=kernel_size, stride=stride, padding=padding, groups=groups, bias=False))
12
+ result.add_module('bn', nn.BatchNorm2d(num_features=out_channels))
13
+ return result
14
+
15
+ class RepVGGBlock(nn.Module):
16
+
17
+ def __init__(self, in_channels, out_channels, kernel_size,
18
+ stride=1, padding=0, dilation=1, groups=1, padding_mode='zeros', deploy=False, use_se=False):
19
+ super(RepVGGBlock, self).__init__()
20
+ self.deploy = deploy
21
+ self.groups = groups
22
+ self.in_channels = in_channels
23
+
24
+ assert kernel_size == 3
25
+ assert padding == 1
26
+
27
+ padding_11 = padding - kernel_size // 2
28
+
29
+ self.nonlinearity = nn.ReLU()
30
+
31
+ if use_se:
32
+ self.se = SEBlock(out_channels, internal_neurons=out_channels // 16)
33
+ else:
34
+ self.se = nn.Identity()
35
+
36
+ if deploy:
37
+ self.rbr_reparam = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride,
38
+ padding=padding, dilation=dilation, groups=groups, bias=True, padding_mode=padding_mode)
39
+
40
+ else:
41
+ self.rbr_identity = nn.BatchNorm2d(num_features=in_channels) if out_channels == in_channels and stride == 1 else None
42
+ self.rbr_dense = conv_bn(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, groups=groups)
43
+ self.rbr_1x1 = conv_bn(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=stride, padding=padding_11, groups=groups)
44
+ print('RepVGG Block, identity = ', self.rbr_identity)
45
+
46
+
47
+ def forward(self, inputs):
48
+ if hasattr(self, 'rbr_reparam'):
49
+ return self.nonlinearity(self.se(self.rbr_reparam(inputs)))
50
+
51
+ if self.rbr_identity is None:
52
+ id_out = 0
53
+ else:
54
+ id_out = self.rbr_identity(inputs)
55
+
56
+ return self.nonlinearity(self.se(self.rbr_dense(inputs) + self.rbr_1x1(inputs) + id_out))
57
+
58
+
59
+ # Optional. This improves the accuracy and facilitates quantization.
60
+ # 1. Cancel the original weight decay on rbr_dense.conv.weight and rbr_1x1.conv.weight.
61
+ # 2. Use like this.
62
+ # loss = criterion(....)
63
+ # for every RepVGGBlock blk:
64
+ # loss += weight_decay_coefficient * 0.5 * blk.get_cust_L2()
65
+ # optimizer.zero_grad()
66
+ # loss.backward()
67
+ def get_custom_L2(self):
68
+ K3 = self.rbr_dense.conv.weight
69
+ K1 = self.rbr_1x1.conv.weight
70
+ t3 = (self.rbr_dense.bn.weight / ((self.rbr_dense.bn.running_var + self.rbr_dense.bn.eps).sqrt())).reshape(-1, 1, 1, 1).detach()
71
+ t1 = (self.rbr_1x1.bn.weight / ((self.rbr_1x1.bn.running_var + self.rbr_1x1.bn.eps).sqrt())).reshape(-1, 1, 1, 1).detach()
72
+
73
+ l2_loss_circle = (K3 ** 2).sum() - (K3[:, :, 1:2, 1:2] ** 2).sum() # The L2 loss of the "circle" of weights in 3x3 kernel. Use regular L2 on them.
74
+ eq_kernel = K3[:, :, 1:2, 1:2] * t3 + K1 * t1 # The equivalent resultant central point of 3x3 kernel.
75
+ l2_loss_eq_kernel = (eq_kernel ** 2 / (t3 ** 2 + t1 ** 2)).sum() # Normalize for an L2 coefficient comparable to regular L2.
76
+ return l2_loss_eq_kernel + l2_loss_circle
77
+
78
+
79
+
80
+ # This func derives the equivalent kernel and bias in a DIFFERENTIABLE way.
81
+ # You can get the equivalent kernel and bias at any time and do whatever you want,
82
+ # for example, apply some penalties or constraints during training, just like you do to the other models.
83
+ # May be useful for quantization or pruning.
84
+ def get_equivalent_kernel_bias(self):
85
+ kernel3x3, bias3x3 = self._fuse_bn_tensor(self.rbr_dense)
86
+ kernel1x1, bias1x1 = self._fuse_bn_tensor(self.rbr_1x1)
87
+ kernelid, biasid = self._fuse_bn_tensor(self.rbr_identity)
88
+ return kernel3x3 + self._pad_1x1_to_3x3_tensor(kernel1x1) + kernelid, bias3x3 + bias1x1 + biasid
89
+
90
+ def _pad_1x1_to_3x3_tensor(self, kernel1x1):
91
+ if kernel1x1 is None:
92
+ return 0
93
+ else:
94
+ return torch.nn.functional.pad(kernel1x1, [1,1,1,1])
95
+
96
+ def _fuse_bn_tensor(self, branch):
97
+ if branch is None:
98
+ return 0, 0
99
+ if isinstance(branch, nn.Sequential):
100
+ kernel = branch.conv.weight
101
+ running_mean = branch.bn.running_mean
102
+ running_var = branch.bn.running_var
103
+ gamma = branch.bn.weight
104
+ beta = branch.bn.bias
105
+ eps = branch.bn.eps
106
+ else:
107
+ assert isinstance(branch, nn.BatchNorm2d)
108
+ if not hasattr(self, 'id_tensor'):
109
+ input_dim = self.in_channels // self.groups
110
+ kernel_value = np.zeros((self.in_channels, input_dim, 3, 3), dtype=np.float32)
111
+ for i in range(self.in_channels):
112
+ kernel_value[i, i % input_dim, 1, 1] = 1
113
+ self.id_tensor = torch.from_numpy(kernel_value).to(branch.weight.device)
114
+ kernel = self.id_tensor
115
+ running_mean = branch.running_mean
116
+ running_var = branch.running_var
117
+ gamma = branch.weight
118
+ beta = branch.bias
119
+ eps = branch.eps
120
+ std = (running_var + eps).sqrt()
121
+ t = (gamma / std).reshape(-1, 1, 1, 1)
122
+ return kernel * t, beta - running_mean * gamma / std
123
+
124
+ def switch_to_deploy(self):
125
+ if hasattr(self, 'rbr_reparam'):
126
+ return
127
+ kernel, bias = self.get_equivalent_kernel_bias()
128
+ self.rbr_reparam = nn.Conv2d(in_channels=self.rbr_dense.conv.in_channels, out_channels=self.rbr_dense.conv.out_channels,
129
+ kernel_size=self.rbr_dense.conv.kernel_size, stride=self.rbr_dense.conv.stride,
130
+ padding=self.rbr_dense.conv.padding, dilation=self.rbr_dense.conv.dilation, groups=self.rbr_dense.conv.groups, bias=True)
131
+ self.rbr_reparam.weight.data = kernel
132
+ self.rbr_reparam.bias.data = bias
133
+ for para in self.parameters():
134
+ para.detach_()
135
+ self.__delattr__('rbr_dense')
136
+ self.__delattr__('rbr_1x1')
137
+ if hasattr(self, 'rbr_identity'):
138
+ self.__delattr__('rbr_identity')
139
+ if hasattr(self, 'id_tensor'):
140
+ self.__delattr__('id_tensor')
141
+ self.deploy = True
142
+
143
+
144
+
145
+ class RepVGG(nn.Module):
146
+
147
+ def __init__(self, num_blocks, num_classes=1000, width_multiplier=None, override_groups_map=None, deploy=False, use_se=False):
148
+ super(RepVGG, self).__init__()
149
+
150
+ assert len(width_multiplier) == 4
151
+
152
+ self.deploy = deploy
153
+ self.override_groups_map = override_groups_map or dict()
154
+ self.use_se = use_se
155
+
156
+ assert 0 not in self.override_groups_map
157
+
158
+ self.in_planes = min(64, int(64 * width_multiplier[0]))
159
+
160
+ self.stage0 = RepVGGBlock(in_channels=3, out_channels=self.in_planes, kernel_size=3, stride=2, padding=1, deploy=self.deploy, use_se=self.use_se)
161
+ self.cur_layer_idx = 1
162
+ self.stage1 = self._make_stage(int(64 * width_multiplier[0]), num_blocks[0], stride=2)
163
+ self.stage2 = self._make_stage(int(128 * width_multiplier[1]), num_blocks[1], stride=2)
164
+ self.stage3 = self._make_stage(int(256 * width_multiplier[2]), num_blocks[2], stride=2)
165
+ self.stage4 = self._make_stage(int(512 * width_multiplier[3]), num_blocks[3], stride=2)
166
+ self.gap = nn.AdaptiveAvgPool2d(output_size=1)
167
+ self.linear = nn.Linear(int(512 * width_multiplier[3]), num_classes)
168
+
169
+
170
+ def _make_stage(self, planes, num_blocks, stride):
171
+ strides = [stride] + [1]*(num_blocks-1)
172
+ blocks = []
173
+ for stride in strides:
174
+ cur_groups = self.override_groups_map.get(self.cur_layer_idx, 1)
175
+ blocks.append(RepVGGBlock(in_channels=self.in_planes, out_channels=planes, kernel_size=3,
176
+ stride=stride, padding=1, groups=cur_groups, deploy=self.deploy, use_se=self.use_se))
177
+ self.in_planes = planes
178
+ self.cur_layer_idx += 1
179
+ return nn.Sequential(*blocks)
180
+
181
+ def forward(self, x):
182
+ out = self.stage0(x)
183
+ out = self.stage1(out)
184
+ out = self.stage2(out)
185
+ out = self.stage3(out)
186
+ out = self.stage4(out)
187
+ out = self.gap(out)
188
+ out = out.view(out.size(0), -1)
189
+ out = self.linear(out)
190
+ return out
191
+
192
+
193
+ optional_groupwise_layers = [2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26]
194
+ g2_map = {l: 2 for l in optional_groupwise_layers}
195
+ g4_map = {l: 4 for l in optional_groupwise_layers}
196
+
197
+ def create_RepVGG_A0(deploy=False):
198
+ return RepVGG(num_blocks=[2, 4, 14, 1], num_classes=1000,
199
+ width_multiplier=[0.75, 0.75, 0.75, 2.5], override_groups_map=None, deploy=deploy)
200
+
201
+ def create_RepVGG_A1(deploy=False):
202
+ return RepVGG(num_blocks=[2, 4, 14, 1], num_classes=1000,
203
+ width_multiplier=[1, 1, 1, 2.5], override_groups_map=None, deploy=deploy)
204
+
205
+ def create_RepVGG_A2(deploy=False):
206
+ return RepVGG(num_blocks=[2, 4, 14, 1], num_classes=1000,
207
+ width_multiplier=[1.5, 1.5, 1.5, 2.75], override_groups_map=None, deploy=deploy)
208
+
209
+ def create_RepVGG_B0(deploy=False):
210
+ return RepVGG(num_blocks=[4, 6, 16, 1], num_classes=1000,
211
+ width_multiplier=[1, 1, 1, 2.5], override_groups_map=None, deploy=deploy)
212
+
213
+ def create_RepVGG_B1(deploy=False):
214
+ return RepVGG(num_blocks=[4, 6, 16, 1], num_classes=1000,
215
+ width_multiplier=[2, 2, 2, 4], override_groups_map=None, deploy=deploy)
216
+
217
+ def create_RepVGG_B1g2(deploy=False):
218
+ return RepVGG(num_blocks=[4, 6, 16, 1], num_classes=1000,
219
+ width_multiplier=[2, 2, 2, 4], override_groups_map=g2_map, deploy=deploy)
220
+
221
+ def create_RepVGG_B1g4(deploy=False):
222
+ return RepVGG(num_blocks=[4, 6, 16, 1], num_classes=1000,
223
+ width_multiplier=[2, 2, 2, 4], override_groups_map=g4_map, deploy=deploy)
224
+
225
+
226
+ def create_RepVGG_B2(deploy=False):
227
+ return RepVGG(num_blocks=[4, 6, 16, 1], num_classes=1000,
228
+ width_multiplier=[2.5, 2.5, 2.5, 5], override_groups_map=None, deploy=deploy)
229
+
230
+ def create_RepVGG_B2g2(deploy=False):
231
+ return RepVGG(num_blocks=[4, 6, 16, 1], num_classes=1000,
232
+ width_multiplier=[2.5, 2.5, 2.5, 5], override_groups_map=g2_map, deploy=deploy)
233
+
234
+ def create_RepVGG_B2g4(deploy=False):
235
+ return RepVGG(num_blocks=[4, 6, 16, 1], num_classes=1000,
236
+ width_multiplier=[2.5, 2.5, 2.5, 5], override_groups_map=g4_map, deploy=deploy)
237
+
238
+
239
+ def create_RepVGG_B3(deploy=False):
240
+ return RepVGG(num_blocks=[4, 6, 16, 1], num_classes=1000,
241
+ width_multiplier=[3, 3, 3, 5], override_groups_map=None, deploy=deploy)
242
+
243
+ def create_RepVGG_B3g2(deploy=False):
244
+ return RepVGG(num_blocks=[4, 6, 16, 1], num_classes=1000,
245
+ width_multiplier=[3, 3, 3, 5], override_groups_map=g2_map, deploy=deploy)
246
+
247
+ def create_RepVGG_B3g4(deploy=False):
248
+ return RepVGG(num_blocks=[4, 6, 16, 1], num_classes=1000,
249
+ width_multiplier=[3, 3, 3, 5], override_groups_map=g4_map, deploy=deploy)
250
+
251
+ def create_RepVGG_D2se(deploy=False):
252
+ return RepVGG(num_blocks=[8, 14, 24, 1], num_classes=1000,
253
+ width_multiplier=[2.5, 2.5, 2.5, 5], override_groups_map=None, deploy=deploy, use_se=True)
254
+
255
+
256
+ func_dict = {
257
+ 'RepVGG-A0': create_RepVGG_A0,
258
+ 'RepVGG-A1': create_RepVGG_A1,
259
+ 'RepVGG-A2': create_RepVGG_A2,
260
+ 'RepVGG-B0': create_RepVGG_B0,
261
+ 'RepVGG-B1': create_RepVGG_B1,
262
+ 'RepVGG-B1g2': create_RepVGG_B1g2,
263
+ 'RepVGG-B1g4': create_RepVGG_B1g4,
264
+ 'RepVGG-B2': create_RepVGG_B2,
265
+ 'RepVGG-B2g2': create_RepVGG_B2g2,
266
+ 'RepVGG-B2g4': create_RepVGG_B2g4,
267
+ 'RepVGG-B3': create_RepVGG_B3,
268
+ 'RepVGG-B3g2': create_RepVGG_B3g2,
269
+ 'RepVGG-B3g4': create_RepVGG_B3g4,
270
+ 'RepVGG-D2se': create_RepVGG_D2se, # Updated at April 25, 2021. This is not reported in the CVPR paper.
271
+ }
272
+ def get_RepVGG_func_by_name(name):
273
+ return func_dict[name]
274
+
275
+
276
+
277
+ # Use this for converting a RepVGG model or a bigger model with RepVGG as its component
278
+ # Use like this
279
+ # model = create_RepVGG_A0(deploy=False)
280
+ # train model or load weights
281
+ # repvgg_model_convert(model, save_path='repvgg_deploy.pth')
282
+ # If you want to preserve the original model, call with do_copy=True
283
+
284
+ # ====================== for using RepVGG as the backbone of a bigger model, e.g., PSPNet, the pseudo code will be like
285
+ # train_backbone = create_RepVGG_B2(deploy=False)
286
+ # train_backbone.load_state_dict(torch.load('RepVGG-B2-train.pth'))
287
+ # train_pspnet = build_pspnet(backbone=train_backbone)
288
+ # segmentation_train(train_pspnet)
289
+ # deploy_pspnet = repvgg_model_convert(train_pspnet)
290
+ # segmentation_test(deploy_pspnet)
291
+ # ===================== example_pspnet.py shows an example
292
+
293
+ def repvgg_model_convert(model:torch.nn.Module, save_path=None, do_copy=True):
294
+ if do_copy:
295
+ model = copy.deepcopy(model)
296
+ for module in model.modules():
297
+ if hasattr(module, 'switch_to_deploy'):
298
+ module.switch_to_deploy()
299
+ if save_path is not None:
300
+ torch.save(model.state_dict(), save_path)
301
+ return model
backbone/se_block.py ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+
5
+ # https://openaccess.thecvf.com/content_cvpr_2018/html/Hu_Squeeze-and-Excitation_Networks_CVPR_2018_paper.html
6
+
7
+ class SEBlock(nn.Module):
8
+
9
+ def __init__(self, input_channels, internal_neurons):
10
+ super(SEBlock, self).__init__()
11
+ self.down = nn.Conv2d(in_channels=input_channels, out_channels=internal_neurons, kernel_size=1, stride=1, bias=True)
12
+ self.up = nn.Conv2d(in_channels=internal_neurons, out_channels=input_channels, kernel_size=1, stride=1, bias=True)
13
+ self.input_channels = input_channels
14
+
15
+ def forward(self, inputs):
16
+ x = F.avg_pool2d(inputs, kernel_size=inputs.size(3))
17
+ x = self.down(x)
18
+ x = F.relu(x)
19
+ x = self.up(x)
20
+ x = torch.sigmoid(x)
21
+ x = x.view(-1, self.input_channels, 1, 1)
22
+ return inputs * x
demo.py ADDED
@@ -0,0 +1,141 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from face_detection import RetinaFace
2
+ from model import SixDRepNet
3
+ import math
4
+ import re
5
+ from matplotlib import pyplot as plt
6
+ import sys
7
+ import os
8
+ import argparse
9
+
10
+ import numpy as np
11
+ import cv2
12
+ import matplotlib.pyplot as plt
13
+ from numpy.lib.function_base import _quantile_unchecked
14
+
15
+ import torch
16
+ import torch.nn as nn
17
+ from torch.utils.data import DataLoader
18
+ from torchvision import transforms
19
+ import torch.backends.cudnn as cudnn
20
+ import torchvision
21
+ import torch.nn.functional as F
22
+ import utils
23
+ import matplotlib
24
+ from PIL import Image
25
+ import time
26
+ matplotlib.use('TkAgg')
27
+
28
+
29
+ def parse_args():
30
+ """Parse input arguments."""
31
+ parser = argparse.ArgumentParser(
32
+ description='Head pose estimation using the 6DRepNet.')
33
+ parser.add_argument('--gpu',
34
+ dest='gpu_id', help='GPU device id to use [0]',
35
+ default=0, type=int)
36
+ parser.add_argument('--cam',
37
+ dest='cam_id', help='Camera device id to use [0]',
38
+ default=0, type=int)
39
+ parser.add_argument('--snapshot',
40
+ dest='snapshot', help='Name of model snapshot.',
41
+ default='', type=str)
42
+ parser.add_argument('--save_viz',
43
+ dest='save_viz', help='Save images with pose cube.',
44
+ default=False, type=bool)
45
+
46
+ args = parser.parse_args()
47
+ return args
48
+
49
+
50
+ transformations = transforms.Compose([transforms.Resize(224),
51
+ transforms.CenterCrop(224),
52
+ transforms.ToTensor(),
53
+ transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
54
+
55
+ if __name__ == '__main__':
56
+ args = parse_args()
57
+ cudnn.enabled = True
58
+ gpu = args.gpu_id
59
+ cam = args.cam_id
60
+ snapshot_path = args.snapshot
61
+ model = SixDRepNet(backbone_name='RepVGG-A0',
62
+ backbone_file='',
63
+ deploy=True,
64
+ pretrained=False)
65
+
66
+ print('Loading data.')
67
+
68
+ detector = RetinaFace(gpu_id=gpu)
69
+
70
+ # Load snapshot
71
+ saved_state_dict = torch.load(os.path.join(
72
+ snapshot_path), map_location='cpu')
73
+
74
+ if 'model_state_dict' in saved_state_dict:
75
+ model.load_state_dict(saved_state_dict['model_state_dict'])
76
+ else:
77
+ model.load_state_dict(saved_state_dict)
78
+ if gpu != -1:
79
+ model.cuda(gpu)
80
+
81
+ # Test the Model
82
+ model.eval() # Change model to 'eval' mode (BN uses moving mean/var).
83
+
84
+ cap = cv2.VideoCapture(cam)
85
+
86
+ # Check if the webcam is opened correctly
87
+ if not cap.isOpened():
88
+ raise IOError("Cannot open webcam")
89
+
90
+ with torch.no_grad():
91
+ while True:
92
+ ret, frame = cap.read()
93
+
94
+ faces = detector(frame)
95
+
96
+ for box, landmarks, score in faces:
97
+
98
+ # Print the location of each face in this image
99
+ if score < .95:
100
+ continue
101
+ x_min = int(box[0])
102
+ y_min = int(box[1])
103
+ x_max = int(box[2])
104
+ y_max = int(box[3])
105
+ bbox_width = abs(x_max - x_min)
106
+ bbox_height = abs(y_max - y_min)
107
+
108
+ x_min = max(0, x_min-int(0.2*bbox_height))
109
+ y_min = max(0, y_min-int(0.2*bbox_width))
110
+ x_max = x_max+int(0.2*bbox_height)
111
+ y_max = y_max+int(0.2*bbox_width)
112
+
113
+ img = frame[y_min:y_max, x_min:x_max]
114
+ img = Image.fromarray(img)
115
+ img = img.convert('RGB')
116
+ img = transformations(img)
117
+
118
+ img = torch.Tensor(img[None, :])
119
+ if gpu != -1:
120
+ img = img.cuda(gpu)
121
+
122
+ c = cv2.waitKey(1)
123
+ if c == 27:
124
+ break
125
+
126
+ start = time.time()
127
+ R_pred = model(img)
128
+ end = time.time()
129
+ print('Head pose estimation: %2f ms' % ((end - start)*1000.))
130
+
131
+ euler = utils.compute_euler_angles_from_rotation_matrices(
132
+ R_pred,use_gpu=False)*180/np.pi
133
+ p_pred_deg = euler[:, 0].cpu()
134
+ y_pred_deg = euler[:, 1].cpu()
135
+ r_pred_deg = euler[:, 2].cpu()
136
+
137
+ #utils.draw_axis(frame, y_pred_deg, p_pred_deg, r_pred_deg, left+int(.5*(right-left)), top, size=100)
138
+ utils.plot_pose_cube(frame, y_pred_deg, p_pred_deg, r_pred_deg, x_min + int(.5*(
139
+ x_max-x_min)), y_min + int(.5*(y_max-y_min)), size=bbox_width)
140
+ cv2.imshow("Demo", np.array(frame, dtype = np.uint8))
141
+ cv2.waitKey(5)
face_down.jpg ADDED
face_right.jpg ADDED
face_up.jpg ADDED
flagged/log.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ 'img','output','flag','username','timestamp'
2
+ '','','','','2022-08-17 14:04:57.627952'
model.py ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn
3
+ import torch.nn.functional as F
4
+ import math
5
+ from backbone.repvgg import get_RepVGG_func_by_name
6
+ import utils
7
+
8
+ class SixDRepNet(nn.Module):
9
+ def __init__(self,
10
+ backbone_name, backbone_file, deploy,
11
+ bins=(1, 2, 3, 6),
12
+ droBatchNorm=nn.BatchNorm2d,
13
+ pretrained=True):
14
+ super(SixDRepNet, self).__init__()
15
+
16
+ repvgg_fn = get_RepVGG_func_by_name(backbone_name)
17
+ backbone = repvgg_fn(deploy)
18
+ if pretrained:
19
+ checkpoint = torch.load(backbone_file)
20
+ if 'state_dict' in checkpoint:
21
+ checkpoint = checkpoint['state_dict']
22
+ ckpt = {k.replace('module.', ''): v for k,
23
+ v in checkpoint.items()} # strip the names
24
+ backbone.load_state_dict(ckpt)
25
+
26
+ self.layer0, self.layer1, self.layer2, self.layer3, self.layer4 = backbone.stage0, backbone.stage1, backbone.stage2, backbone.stage3, backbone.stage4
27
+ self.gap = nn.AdaptiveAvgPool2d(output_size=1)
28
+
29
+ last_channel = 0
30
+ for n, m in self.layer4.named_modules():
31
+ if ('rbr_dense' in n or 'rbr_reparam' in n) and isinstance(m, nn.Conv2d):
32
+ last_channel = m.out_channels
33
+
34
+ fea_dim = last_channel
35
+
36
+ self.linear_reg = nn.Linear(fea_dim, 6)
37
+
38
+ def forward(self, x):
39
+
40
+ x = self.layer0(x)
41
+ x = self.layer1(x)
42
+ x = self.layer2(x)
43
+ x = self.layer3(x)
44
+ x = self.layer4(x)
45
+ x= self.gap(x)
46
+ x = torch.flatten(x, 1)
47
+ x = self.linear_reg(x)
48
+ return utils.compute_rotation_matrix_from_ortho6d(x,use_gpu=False)
49
+
50
+
51
+
52
+
53
+ class SixDRepNet2(nn.Module):
54
+ def __init__(self, block, layers, fc_layers=1):
55
+ self.inplanes = 64
56
+ super(SixDRepNet2, self).__init__()
57
+ self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
58
+ bias=False)
59
+ self.bn1 = nn.BatchNorm2d(64)
60
+ self.relu = nn.ReLU(inplace=True)
61
+ self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
62
+ self.layer1 = self._make_layer(block, 64, layers[0])
63
+ self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
64
+ self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
65
+ self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
66
+ self.avgpool = nn.AvgPool2d(7)
67
+
68
+ self.linear_reg = nn.Linear(512*block.expansion,6)
69
+
70
+
71
+
72
+ # Vestigial layer from previous experiments
73
+ self.fc_finetune = nn.Linear(512 * block.expansion + 3, 3)
74
+
75
+ for m in self.modules():
76
+ if isinstance(m, nn.Conv2d):
77
+ n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
78
+ m.weight.data.normal_(0, math.sqrt(2. / n))
79
+ elif isinstance(m, nn.BatchNorm2d):
80
+ m.weight.data.fill_(1)
81
+ m.bias.data.zero_()
82
+
83
+ def _make_layer(self, block, planes, blocks, stride=1):
84
+ downsample = None
85
+ if stride != 1 or self.inplanes != planes * block.expansion:
86
+ downsample = nn.Sequential(
87
+ nn.Conv2d(self.inplanes, planes * block.expansion,
88
+ kernel_size=1, stride=stride, bias=False),
89
+ nn.BatchNorm2d(planes * block.expansion),
90
+ )
91
+
92
+ layers = []
93
+ layers.append(block(self.inplanes, planes, stride, downsample))
94
+ self.inplanes = planes * block.expansion
95
+ for i in range(1, blocks):
96
+ layers.append(block(self.inplanes, planes))
97
+
98
+ return nn.Sequential(*layers)
99
+
100
+ def forward(self, x):
101
+ x = self.conv1(x)
102
+ x = self.bn1(x)
103
+ x = self.relu(x)
104
+ x = self.maxpool(x)
105
+
106
+ x = self.layer1(x)
107
+ x = self.layer2(x)
108
+ x = self.layer3(x)
109
+ x = self.layer4(x)
110
+
111
+ x = self.avgpool(x)
112
+ x = x.view(x.size(0), -1)
113
+
114
+ x = self.linear_reg(x)
115
+ out = utils.compute_rotation_matrix_from_ortho6d(x)
116
+
117
+ return out
utils.py ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import torch
3
+ #from torch.utils.serialization import load_lua
4
+ import os
5
+ import scipy.io as sio
6
+ import cv2
7
+ import math
8
+ from math import cos, sin
9
+
10
+ def plot_pose_cube(img, yaw, pitch, roll, tdx=None, tdy=None, size=150.):
11
+ # Input is a cv2 image
12
+ # pose_params: (pitch, yaw, roll, tdx, tdy)
13
+ # Where (tdx, tdy) is the translation of the face.
14
+ # For pose we have [pitch yaw roll tdx tdy tdz scale_factor]
15
+
16
+ p = pitch * np.pi / 180
17
+ y = -(yaw * np.pi / 180)
18
+ r = roll * np.pi / 180
19
+ if tdx != None and tdy != None:
20
+ face_x = tdx - 0.50 * size
21
+ face_y = tdy - 0.50 * size
22
+
23
+ else:
24
+ height, width = img.shape[:2]
25
+ face_x = width / 2 - 0.5 * size
26
+ face_y = height / 2 - 0.5 * size
27
+
28
+ x1 = size * (cos(y) * cos(r)) + face_x
29
+ y1 = size * (cos(p) * sin(r) + cos(r) * sin(p) * sin(y)) + face_y
30
+ x2 = size * (-cos(y) * sin(r)) + face_x
31
+ y2 = size * (cos(p) * cos(r) - sin(p) * sin(y) * sin(r)) + face_y
32
+ x3 = size * (sin(y)) + face_x
33
+ y3 = size * (-cos(y) * sin(p)) + face_y
34
+
35
+
36
+ # Draw base in red
37
+ cv2.line(img, (int(face_x), int(face_y)), (int(x1),int(y1)),(0,0,255),3)
38
+ cv2.line(img, (int(face_x), int(face_y)), (int(x2),int(y2)),(0,0,255),3)
39
+ cv2.line(img, (int(x2), int(y2)), (int(x2+x1-face_x),int(y2+y1-face_y)),(0,0,255),3)
40
+ cv2.line(img, (int(x1), int(y1)), (int(x1+x2-face_x),int(y1+y2-face_y)),(0,0,255),3)
41
+ # Draw pillars in blue
42
+ cv2.line(img, (int(face_x), int(face_y)), (int(x3),int(y3)),(255,0,0),2)
43
+ cv2.line(img, (int(x1), int(y1)), (int(x1+x3-face_x),int(y1+y3-face_y)),(255,0,0),2)
44
+ cv2.line(img, (int(x2), int(y2)), (int(x2+x3-face_x),int(y2+y3-face_y)),(255,0,0),2)
45
+ cv2.line(img, (int(x2+x1-face_x),int(y2+y1-face_y)), (int(x3+x1+x2-2*face_x),int(y3+y2+y1-2*face_y)),(255,0,0),2)
46
+ # Draw top in green
47
+ cv2.line(img, (int(x3+x1-face_x),int(y3+y1-face_y)), (int(x3+x1+x2-2*face_x),int(y3+y2+y1-2*face_y)),(0,255,0),2)
48
+ cv2.line(img, (int(x2+x3-face_x),int(y2+y3-face_y)), (int(x3+x1+x2-2*face_x),int(y3+y2+y1-2*face_y)),(0,255,0),2)
49
+ cv2.line(img, (int(x3), int(y3)), (int(x3+x1-face_x),int(y3+y1-face_y)),(0,255,0),2)
50
+ cv2.line(img, (int(x3), int(y3)), (int(x3+x2-face_x),int(y3+y2-face_y)),(0,255,0),2)
51
+
52
+ return img
53
+
54
+ def draw_axis(img, yaw, pitch, roll, tdx=None, tdy=None, size = 100):
55
+
56
+ pitch = pitch * np.pi / 180
57
+ yaw = -(yaw * np.pi / 180)
58
+ roll = roll * np.pi / 180
59
+
60
+ if tdx != None and tdy != None:
61
+ tdx = tdx
62
+ tdy = tdy
63
+ else:
64
+ height, width = img.shape[:2]
65
+ tdx = width / 2
66
+ tdy = height / 2
67
+
68
+ # X-Axis pointing to right. drawn in red
69
+ x1 = size * (cos(yaw) * cos(roll)) + tdx
70
+ y1 = size * (cos(pitch) * sin(roll) + cos(roll) * sin(pitch) * sin(yaw)) + tdy
71
+
72
+ # Y-Axis | drawn in green
73
+ # v
74
+ x2 = size * (-cos(yaw) * sin(roll)) + tdx
75
+ y2 = size * (cos(pitch) * cos(roll) - sin(pitch) * sin(yaw) * sin(roll)) + tdy
76
+
77
+ # Z-Axis (out of the screen) drawn in blue
78
+ x3 = size * (sin(yaw)) + tdx
79
+ y3 = size * (-cos(yaw) * sin(pitch)) + tdy
80
+
81
+ cv2.line(img, (int(tdx), int(tdy)), (int(x1),int(y1)),(0,0,255),4)
82
+ cv2.line(img, (int(tdx), int(tdy)), (int(x2),int(y2)),(0,255,0),4)
83
+ cv2.line(img, (int(tdx), int(tdy)), (int(x3),int(y3)),(255,0,0),4)
84
+
85
+ return img
86
+
87
+
88
+ def get_pose_params_from_mat(mat_path):
89
+ # This functions gets the pose parameters from the .mat
90
+ # Annotations that come with the Pose_300W_LP dataset.
91
+ mat = sio.loadmat(mat_path)
92
+ # [pitch yaw roll tdx tdy tdz scale_factor]
93
+ pre_pose_params = mat['Pose_Para'][0]
94
+ # Get [pitch, yaw, roll, tdx, tdy]
95
+ pose_params = pre_pose_params[:5]
96
+ return pose_params
97
+
98
+ def get_ypr_from_mat(mat_path):
99
+ # Get yaw, pitch, roll from .mat annotation.
100
+ # They are in radians
101
+ mat = sio.loadmat(mat_path)
102
+ # [pitch yaw roll tdx tdy tdz scale_factor]
103
+ pre_pose_params = mat['Pose_Para'][0]
104
+ # Get [pitch, yaw, roll]
105
+ pose_params = pre_pose_params[:3]
106
+ return pose_params
107
+
108
+ def get_pt2d_from_mat(mat_path):
109
+ # Get 2D landmarks
110
+ mat = sio.loadmat(mat_path)
111
+ pt2d = mat['pt2d']
112
+ return pt2d
113
+
114
+ # batch*n
115
+ def normalize_vector( v, use_gpu=True):
116
+ batch=v.shape[0]
117
+ v_mag = torch.sqrt(v.pow(2).sum(1))# batch
118
+ if use_gpu:
119
+ v_mag = torch.max(v_mag, torch.autograd.Variable(torch.FloatTensor([1e-8]).cuda()))
120
+ else:
121
+ v_mag = torch.max(v_mag, torch.autograd.Variable(torch.FloatTensor([1e-8])))
122
+ v_mag = v_mag.view(batch,1).expand(batch,v.shape[1])
123
+ v = v/v_mag
124
+ return v
125
+
126
+ # u, v batch*n
127
+ def cross_product( u, v):
128
+ batch = u.shape[0]
129
+ #print (u.shape)
130
+ #print (v.shape)
131
+ i = u[:,1]*v[:,2] - u[:,2]*v[:,1]
132
+ j = u[:,2]*v[:,0] - u[:,0]*v[:,2]
133
+ k = u[:,0]*v[:,1] - u[:,1]*v[:,0]
134
+
135
+ out = torch.cat((i.view(batch,1), j.view(batch,1), k.view(batch,1)),1)#batch*3
136
+
137
+ return out
138
+
139
+
140
+ #poses batch*6
141
+ #poses
142
+ def compute_rotation_matrix_from_ortho6d(poses, use_gpu=True):
143
+ x_raw = poses[:,0:3]#batch*3
144
+ y_raw = poses[:,3:6]#batch*3
145
+
146
+ x = normalize_vector(x_raw, use_gpu) #batch*3
147
+ z = cross_product(x,y_raw) #batch*3
148
+ z = normalize_vector(z, use_gpu)#batch*3
149
+ y = cross_product(z,x)#batch*3
150
+
151
+ x = x.view(-1,3,1)
152
+ y = y.view(-1,3,1)
153
+ z = z.view(-1,3,1)
154
+ matrix = torch.cat((x,y,z), 2) #batch*3*3
155
+ return matrix
156
+
157
+
158
+ #input batch*4*4 or batch*3*3
159
+ #output torch batch*3 x, y, z in radiant
160
+ #the rotation is in the sequence of x,y,z
161
+ def compute_euler_angles_from_rotation_matrices(rotation_matrices, use_gpu=True):
162
+ batch=rotation_matrices.shape[0]
163
+ R=rotation_matrices
164
+ sy = torch.sqrt(R[:,0,0]*R[:,0,0]+R[:,1,0]*R[:,1,0])
165
+ singular= sy<1e-6
166
+ singular=singular.float()
167
+
168
+ x=torch.atan2(R[:,2,1], R[:,2,2])
169
+ y=torch.atan2(-R[:,2,0], sy)
170
+ z=torch.atan2(R[:,1,0],R[:,0,0])
171
+
172
+ xs=torch.atan2(-R[:,1,2], R[:,1,1])
173
+ ys=torch.atan2(-R[:,2,0], sy)
174
+ zs=R[:,1,0]*0
175
+
176
+ if use_gpu:
177
+ out_euler=torch.autograd.Variable(torch.zeros(batch,3).cuda())
178
+ else:
179
+ out_euler=torch.autograd.Variable(torch.zeros(batch,3))
180
+ out_euler[:,0]=x*(1-singular)+xs*singular
181
+ out_euler[:,1]=y*(1-singular)+ys*singular
182
+ out_euler[:,2]=z*(1-singular)+zs*singular
183
+
184
+ return out_euler
185
+
186
+
187
+ def get_R(x,y,z):
188
+ ''' Get rotation matrix from three rotation angles (radians). right-handed.
189
+ Args:
190
+ angles: [3,]. x, y, z angles
191
+ Returns:
192
+ R: [3, 3]. rotation matrix.
193
+ '''
194
+ # x
195
+ Rx = np.array([[1, 0, 0],
196
+ [0, np.cos(x), -np.sin(x)],
197
+ [0, np.sin(x), np.cos(x)]])
198
+ # y
199
+ Ry = np.array([[np.cos(y), 0, np.sin(y)],
200
+ [0, 1, 0],
201
+ [-np.sin(y), 0, np.cos(y)]])
202
+ # z
203
+ Rz = np.array([[np.cos(z), -np.sin(z), 0],
204
+ [np.sin(z), np.cos(z), 0],
205
+ [0, 0, 1]])
206
+
207
+ R = Rz.dot(Ry.dot(Rx))
208
+ return R
weights_ALFW_A0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:46333a6f16f15a95621fbc0db8b00705c7c776172158ef7e671a55f8710ac894
3
+ size 28161179