import torch from torch import nn import torch.nn.functional as F import math from backbone.repvgg import get_RepVGG_func_by_name import utils class SixDRepNet(nn.Module): def __init__(self, backbone_name, backbone_file, deploy, bins=(1, 2, 3, 6), droBatchNorm=nn.BatchNorm2d, pretrained=True): super(SixDRepNet, self).__init__() repvgg_fn = get_RepVGG_func_by_name(backbone_name) backbone = repvgg_fn(deploy) if pretrained: checkpoint = torch.load(backbone_file) if 'state_dict' in checkpoint: checkpoint = checkpoint['state_dict'] ckpt = {k.replace('module.', ''): v for k, v in checkpoint.items()} # strip the names backbone.load_state_dict(ckpt) self.layer0, self.layer1, self.layer2, self.layer3, self.layer4 = backbone.stage0, backbone.stage1, backbone.stage2, backbone.stage3, backbone.stage4 self.gap = nn.AdaptiveAvgPool2d(output_size=1) last_channel = 0 for n, m in self.layer4.named_modules(): if ('rbr_dense' in n or 'rbr_reparam' in n) and isinstance(m, nn.Conv2d): last_channel = m.out_channels fea_dim = last_channel self.linear_reg = nn.Linear(fea_dim, 6) def forward(self, x): x = self.layer0(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x= self.gap(x) x = torch.flatten(x, 1) x = self.linear_reg(x) return utils.compute_rotation_matrix_from_ortho6d(x,use_gpu=False) class SixDRepNet2(nn.Module): def __init__(self, block, layers, fc_layers=1): self.inplanes = 64 super(SixDRepNet2, self).__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) self.layer3 = self._make_layer(block, 256, layers[2], stride=2) self.layer4 = self._make_layer(block, 512, layers[3], stride=2) self.avgpool = nn.AvgPool2d(7) self.linear_reg = nn.Linear(512*block.expansion,6) # Vestigial layer from previous experiments self.fc_finetune = nn.Linear(512 * block.expansion + 3, 3) for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() def _make_layer(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) x = x.view(x.size(0), -1) x = self.linear_reg(x) out = utils.compute_rotation_matrix_from_ortho6d(x) return out