# source: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/blob/main/src/utils_display.py
from dataclasses import dataclass
import plotly.graph_objects as go
from transformers import AutoConfig
import plotly.express as px
import numpy as np
# These classes are for user facing column names, to avoid having to change them
# all around the code when a modif is needed
@dataclass
class ColumnContent:
    name: str
    type: str
    displayed_by_default: bool
    hidden: bool = False


def fields(raw_class):
    return [
        v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"
    ]


@dataclass(frozen=True)
class AutoEvalColumn:  # Auto evals column
    model_type_symbol = ColumnContent("type", "str", True)
    model = ColumnContent("model", "markdown", True)
    complete_score = ColumnContent("complete", "number", True)
    instruct_score = ColumnContent("instruct", "number", True)
    elo_mle = ColumnContent("elo_mle", "number", True)
    dummy = ColumnContent("model", "str", True)
    size = ColumnContent("size", "number", True)


def model_hyperlink(link, model_name):
    return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'


def make_clickable_names(df):
    df["model"] = df.apply(
        lambda row: model_hyperlink(row["link"], row["model"]), axis=1
    )
    return df


def plot_elo_mle(df):
    fig = px.scatter(df, x="model", y="rating", error_y="error_y",
                     error_y_minus="error_y_minus",
                    #  title="Bootstrap of Elo MLE Estimates (BigCodeBench-Complete)"
                     )
    fig.update_layout(xaxis_title="Model", 
                      yaxis_title="Rating",
                      autosize=True,
                    #   width=1300,
                    #   height=900,
                      )
    return fig


def plot_solve_rate(df, task, rows=30, cols=38):
    keys = df["task_id"]
    values = df["solve_rate"]
    
    values = np.array(values)
        
    n = len(values)
    if rows is None or cols is None:
        cols = int(math.sqrt(n))
        rows = cols if cols * cols >= n else cols + 1

        while rows * cols < n:
            cols += 1

    values = np.pad(values, (0, rows * cols - n), 'constant', constant_values=np.nan).reshape((rows, cols))
    keys = np.pad(keys, (0, rows * cols - n), 'constant', constant_values='').reshape((rows, cols))

    hover_text = np.empty_like(values, dtype=object)
    for i in range(rows):
        for j in range(cols):
            if not np.isnan(values[i, j]):
                hover_text[i, j] = f"{keys[i, j]}<br>Solve Rate: {values[i, j]:.2f}"
            else:
                hover_text[i, j] = "NaN"

    upper_solve_rate = round(np.count_nonzero(values)/n*100, 2)
    fig = go.Figure(data=go.Heatmap(
        z=values,
        text=hover_text,
        hoverinfo='text',
        colorscale='teal',
        zmin=0,
        zmax=100
    ))

    fig.update_layout(
        title=f'BigCodeBench-{task}<br><i>Lowest Upper Limit: {upper_solve_rate}%</i>',
        xaxis_nticks=cols,
        yaxis_nticks=rows,
        xaxis=dict(showticklabels=False),
        yaxis=dict(showticklabels=False),
        autosize=True,
        # width=760,
        # height=600,
    )
    
    return fig


def styled_error(error):
    return f"<p style='color: red; font-size: 20px; text-align: center;'>{error}</p>"


def styled_warning(warn):
    return f"<p style='color: orange; font-size: 20px; text-align: center;'>{warn}</p>"


def styled_message(message):
    return f"<p style='color: green; font-size: 20px; text-align: center;'>{message}</p>"


def has_no_nan_values(df, columns):
    return df[columns].notna().all(axis=1)


def has_nan_values(df, columns):
    return df[columns].isna().any(axis=1)


def is_model_on_hub(model_name: str, revision: str) -> bool:
    try:
        AutoConfig.from_pretrained(model_name, revision=revision, trust_remote_code=False)
        return True, None

    except ValueError:
        return (
            False,
            "needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.",
        )

    except Exception as e:
        print(f"Could not get the model config from the hub.: {e}")
        return False, "was not found on hub!"