Spaces:
Running
Running
File size: 1,064 Bytes
aac647d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 |
import torch
import gradio as gr
import json
from torchvision import transforms
import torch.nn.functional as F
TORCHSCRIPT_PATH = "res/screensim-resnet-uda+web350k.torchscript"
IMG_SIZE = (256, 128)
model = torch.jit.load(TORCHSCRIPT_PATH)
img_transforms = transforms.Compose([
transforms.Resize(IMG_SIZE),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
def predict(img1, img2, thresh=0.35):
img_input1 = img_transforms(img1).unsqueeze(0)
img_input2 = img_transforms(img2).unsqueeze(0)
diff = torch.linalg.norm(model(img_input1) - model(img_input2))
return "{:.3f}".format(diff), "same screen" if float(diff) < thresh else "different screens"
example_imgs = [
["res/example_pair1.jpg", "res/example_pair2.jpg", 0.35],
["res/example_pair1.jpg", "res/example.jpg", 0.35]
]
interface = gr.Interface(fn=predict, inputs=[gr.Image(type="pil"), gr.Image(type="pil"), gr.Slider(0.2, 0.5, step=0.05, value=0.35)], outputs=["text", "text"], examples=example_imgs)
interface.launch()
|