binery commited on
Commit
998bfdf
·
1 Parent(s): d4e2d26

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +46 -26
app.py CHANGED
@@ -1,36 +1,56 @@
1
- """
2
- Donut
3
- """
4
  import gradio as gr
5
- import torch
6
- from PIL import Image
7
 
8
- from donut import DonutModel
 
9
 
10
- def demo_process(input_img):
11
- global pretrained_model, task_prompt, task_name
12
- # input_img = Image.fromarray(input_img)
13
- output = pretrained_model.inference(image=input_img, prompt=task_prompt)["predictions"][0]
14
- return output
15
 
16
- task_prompt = f"<s_cord-v2>"
 
17
 
18
- image = Image.open("./sample_image_cord_test_receipt_00004.png")
19
- image.save("cord_sample_receipt1.png")
20
- image = Image.open("./sample_image_cord_test_receipt_00012.png")
21
- image.save("cord_sample_receipt2.png")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
 
23
- pretrained_model = DonutModel.from_pretrained("Raj-Master/donut-demo-123/blob/main")
24
- pretrained_model.encoder.to(torch.bfloat16)
25
- pretrained_model.eval()
26
 
27
  demo = gr.Interface(
28
- fn=demo_process,
29
- inputs= gr.inputs.Image(type="pil"),
30
  outputs="json",
31
- title=f"Donut 🍩 demonstration",
32
- description="""This model is trained with 140 receipt images """,
33
- examples=[["cord_sample_receipt1.png"], ["cord_sample_receipt2.png"]],
34
- cache_examples=False,
35
- )
 
 
36
  demo.launch()
 
1
+ import re
 
 
2
  import gradio as gr
 
 
3
 
4
+ import torch
5
+ from transformers import DonutProcessor, VisionEncoderDecoderModel
6
 
7
+ processor = DonutProcessor.from_pretrained("Raj-Master/donut-demo-123")
8
+ model = VisionEncoderDecoderModel.from_pretrained("Raj-Master/donut-demo-123")
 
 
 
9
 
10
+ device = "cuda" if torch.cuda.is_available() else "cpu"
11
+ model.to(device)
12
 
13
+ def process_document(image):
14
+ # prepare encoder inputs
15
+ pixel_values = processor(image, return_tensors="pt").pixel_values
16
+
17
+ # prepare decoder inputs
18
+ task_prompt = "<s_cord-v2>"
19
+ decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids
20
+
21
+ # generate answer
22
+ outputs = model.generate(
23
+ pixel_values.to(device),
24
+ decoder_input_ids=decoder_input_ids.to(device),
25
+ max_length=model.decoder.config.max_position_embeddings,
26
+ early_stopping=True,
27
+ pad_token_id=processor.tokenizer.pad_token_id,
28
+ eos_token_id=processor.tokenizer.eos_token_id,
29
+ use_cache=True,
30
+ num_beams=1,
31
+ bad_words_ids=[[processor.tokenizer.unk_token_id]],
32
+ return_dict_in_generate=True,
33
+ )
34
+
35
+ # postprocess
36
+ sequence = processor.batch_decode(outputs.sequences)[0]
37
+ sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
38
+ sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token
39
+
40
+ return processor.token2json(sequence)
41
 
42
+ description = "Gradio Demo for Donut, an instance of `VisionEncoderDecoderModel` fine-tuned on CORD (document parsing). To use it, simply upload your image and click 'submit', or click one of the examples to load them. Read more at the links below."
43
+ article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2111.15664' target='_blank'>Donut: OCR-free Document Understanding Transformer</a> | <a href='https://github.com/clovaai/donut' target='_blank'>Github Repo</a></p>"
 
44
 
45
  demo = gr.Interface(
46
+ fn=process_document,
47
+ inputs="image",
48
  outputs="json",
49
+ title="Demo: Donut 🍩 for Document Parsing",
50
+ description=description,
51
+ article=article,
52
+ enable_queue=True,
53
+ examples=[["example.png"], ["example_2.png"], ["example_3.png"]],
54
+ cache_examples=False)
55
+
56
  demo.launch()