bipin
commited on
Commit
•
b69fb46
1
Parent(s):
ecef7f6
update 2.1
Browse files- .gitignore +1 -0
- app.py +1 -1
- app2.py +68 -0
.gitignore
CHANGED
@@ -13,6 +13,7 @@ develop-eggs/
|
|
13 |
dist/
|
14 |
downloads/
|
15 |
etc/
|
|
|
16 |
eggs/
|
17 |
scripts/
|
18 |
share/
|
|
|
13 |
dist/
|
14 |
downloads/
|
15 |
etc/
|
16 |
+
include/
|
17 |
eggs/
|
18 |
scripts/
|
19 |
share/
|
app.py
CHANGED
@@ -127,7 +127,7 @@ else:
|
|
127 |
|
128 |
elif q_input and option=="Code":
|
129 |
image_file = "pro-vision-dummy.jpg"
|
130 |
-
image = Image.open(image_file)
|
131 |
with st.spinner("Processing..."):
|
132 |
mod_prompt = code_prompt + pdf_text
|
133 |
response = get_gemini_response(mod_prompt, q_input)
|
|
|
127 |
|
128 |
elif q_input and option=="Code":
|
129 |
image_file = "pro-vision-dummy.jpg"
|
130 |
+
#image = Image.open(image_file)
|
131 |
with st.spinner("Processing..."):
|
132 |
mod_prompt = code_prompt + pdf_text
|
133 |
response = get_gemini_response(mod_prompt, q_input)
|
app2.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import google.generativeai as genai
|
3 |
+
from langchain_google_genai import GoogleGenerativeAI, ChatGoogleGenerativeAI, GoogleGenerativeAIEmbeddings
|
4 |
+
from dotenv import load_dotenv
|
5 |
+
import urllib
|
6 |
+
import warnings
|
7 |
+
from pathlib import Path as p
|
8 |
+
from pprint import pprint
|
9 |
+
from text_ext import extract_text_from_pdf
|
10 |
+
import pandas as pd
|
11 |
+
from langchain import PromptTemplate
|
12 |
+
from langchain.chains.question_answering import load_qa_chain
|
13 |
+
from langchain.document_loaders import PyPDFLoader
|
14 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
15 |
+
from langchain.vectorstores import Chroma
|
16 |
+
from langchain.chains import RetrievalQA
|
17 |
+
import streamlit as st
|
18 |
+
|
19 |
+
import warnings
|
20 |
+
|
21 |
+
# Filter out LangChainDeprecationWarning
|
22 |
+
warnings.filterwarnings("ignore", category=Warning)
|
23 |
+
warnings.filterwarnings("ignore", category=UserWarning)
|
24 |
+
|
25 |
+
load_dotenv()
|
26 |
+
|
27 |
+
GOOGLE_API_KEY=os.getenv("GOOGLE_API_KEY")
|
28 |
+
#print(GOOGLE_API_KEY)
|
29 |
+
|
30 |
+
|
31 |
+
|
32 |
+
chat_model = ChatGoogleGenerativeAI(model="gemini-pro",google_api_key=GOOGLE_API_KEY, temperature=0.2,convert_system_message_to_human=True)
|
33 |
+
|
34 |
+
st.set_page_config(page_title="Gemini ChatPDF Langchain Application", layout="wide")
|
35 |
+
question = st.chat_input(key="input", placeholder="Ask your question")
|
36 |
+
|
37 |
+
|
38 |
+
pdf_file_path = "Uploaded\paper.pdf"
|
39 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=1000)
|
40 |
+
context = extract_text_from_pdf(pdf_file_path)
|
41 |
+
#context = "No more today"
|
42 |
+
context = "\n\n"+context
|
43 |
+
#print(context)
|
44 |
+
texts = text_splitter.split_text(context)
|
45 |
+
#print(len(texts))
|
46 |
+
|
47 |
+
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001",google_api_key=GOOGLE_API_KEY)
|
48 |
+
|
49 |
+
if question:
|
50 |
+
vector_index = Chroma.from_texts(texts, embeddings).as_retriever(search_kwargs={"k":5})
|
51 |
+
related_docs = vector_index.get_relevant_documents(question)
|
52 |
+
|
53 |
+
prompt_template = """
|
54 |
+
Answer the question with full detailed as possible from the provided context, make sure to provide all the details, if the answer is not in
|
55 |
+
provided context just say, try to answer it from your knowledge but don't provide the wrong answer\n\n
|
56 |
+
Context:\n {context}?\n
|
57 |
+
Question: \n{question}\n
|
58 |
+
|
59 |
+
Response:
|
60 |
+
"""
|
61 |
+
prompt = PromptTemplate(template = prompt_template, input_variables = ["context", "question"])
|
62 |
+
chain = load_qa_chain(chat_model, chain_type="stuff", prompt=prompt)
|
63 |
+
response = chain({"input_documents":related_docs, "question": question}, return_only_outputs=True)
|
64 |
+
|
65 |
+
#question = "Describe the Multi-head attention layer in detail?"
|
66 |
+
|
67 |
+
result = response
|
68 |
+
st.write(result["output_text"])
|