File size: 3,439 Bytes
c18ccee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import streamlit as st
import openai

import tempfile
import os

# Set up the Streamlit app
st.title("Triplet Audio Transcription and Journal Structuring App")

# Make an image for the app with the triplet.png image
st.image("triplet3.png", width=600)
st.write("Upload an audio file, and we'll transcribe it and structure the output as a journal entry.")

# Supported audio file formats
SUPPORTED_FORMATS = ['flac', 'm4a', 'mp3', 'mp4', 'mpeg', 'mpga', 'oga', 'ogg', 'wav', 'webm']

# Input field for OpenAI API key
api_key = st.text_input("Enter your OpenAI API key:", type="password")

st.write("Everything is open source, please clone and run locally. Bring your own API key. We are using base whisper and chat-gpt models from OpenAI. The app is built using Streamlit and Python. (Note: This app is for demonstration purposes only. Do not upload sensitive information.")


if api_key:
    # Initialize OpenAI client with the API key
    client = openai.OpenAI(api_key=api_key)

    # Function to transcribe audio using OpenAI Whisper
    def transcribe_audio(file_path):
        try:
            with open(file_path, "rb") as audio_file:
                transcript = client.audio.transcriptions.create(
                                file=audio_file,
                                model="whisper-1",
                                response_format="verbose_json"
                                )
                transcription = transcript.text
            return transcription
        except Exception as e:
            st.error(f"Error in transcription: {e}")
            return None

    # Function to structure transcription as a journal entry using Chat-GPT
    def structure_as_journal(transcription):
        try:
            prompt = f"Structure the following transcription as a detailed journal entry:\n\n{transcription}"
            response = client.chat.completions.create(
                model="gpt-3.5-turbo",
                messages=[  
                    {"role": "system", "content": "You are a helpful assistant."},
                    {"role": "user", "content": prompt}
                ],
                max_tokens=1024
            )
            journal_entry = response.choices[0].message.content
            return journal_entry
        except Exception as e:
            st.error(f"Error in structuring journal entry: {e}")
            return None

    # File uploader for audio files
    uploaded_file = st.file_uploader("Upload an audio file", type=SUPPORTED_FORMATS)

    if uploaded_file:
        # Save uploaded file temporarily
        with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(uploaded_file.name)[1]) as temp_file:
            temp_file.write(uploaded_file.read())
            temp_file_path = temp_file.name

        # Transcribe audio
        st.write("Transcribing audio...")
        transcription = transcribe_audio(temp_file_path)

        if transcription:
            st.write("Transcription:")
            st.write(transcription)

            # Structure transcription as a journal entry
            st.write("Structuring as a journal entry...")
            journal_entry = structure_as_journal(transcription)

            if journal_entry:
                st.write("Journal Entry:")
                st.write(journal_entry)

        # Clean up temporary file
        os.remove(temp_file_path)
else:
    st.warning("Please enter your OpenAI API key to proceed.")