
Code Documentation

Datasets

Run pip install -r requirements.txt to install all the necessary pack-
ages required to run prepareDataset.py and prepareDataset2.py

prepareDataset.py

This script processes chemical data files containing SMILES strings. It stan-
dardizes the SMILES strings, converts them to SELFIES strings, and saves
the processed data to new files. The script supports various file formats and
processes each file in a specified directory.

How to run:

python script name.py --folder path <path to input folder>

--smiles column name <column name> --output directory

<path to output directory>

prepareDataset2.py

This script processes chemical data files containing SMILES strings and converts
them to various chemical representations: DeepSMILES, SELFIES, SAFE, and
Group SELFIES. The script can load datasets from Hugging Face or local di-
rectories, process the SMILES strings, and save the processed data.

How to run:

python script name.py --dataset <dataset name>

1

Tokenizers

Run pip install -r requirements.txt to install all the necessary pack-
ages required to run train tokenizer.py

train tokenizer.py

This Python script provides functionality to train various types of tokenizers for
SMILES strings, including atom-wise, k-mer, BPE, and SmilesPE tokenizers.
It uses the Hugging Face datasets library for loading SMILES datasets and the
tokenizers library for tokenizer implementation.

How to run:

python smiles tokenizer.py -dataset name <dataset name>

-mol type <molecule type> -tokenizer method

<tokenizer method> -max vocab size <max vocab size>

Model

Run pip install -r requirements.txt to install all the necessary pack-
ages required to run the model training and generation scripts

Training

The training can be carried out by running the bash scripts train moses.sh

and train guacamol.sh to train using the moses and guacamol datasets respec-
tively. The parameters of the conditioned training can be altered by modifying
the bash scripts.

How to run:

Run bash ./train moses.sh

Run bash ./train guacamol.sh

Generate

The generation of new molecules using the trained models can be carried out us-
ing the bash scripts generate guacamol prop.sh and generate moses prop scaf.sh.
The parameters of the generation can be controlled by modifying these scripts.

How to run:

./generate guacamol prop.sh

./generate moses prop scaf.sh

2

Fine-Tuning

Run pip install -r requirements.txt to install all the necessary pack-
ages required to run the files

ReSTforFineTuning.py

This script implements the Reinforced Self-Training (ReST) framework for fine-
tuning large language models (LLMs). The ReST framework leverages princi-
ples of reinforcement learning (RL) to optimize LLMs, particularly in domains
requiring high-quality outputs such as molecular generation. The script inte-
grates dataset generation with policy improvement to align models with specific
desired outcomes.

How to run:

python ReSTforFineTuning.py

visualize logs.py

This script plots training metrics from a CSV file and saves the plots as an image.
It uses pandas for data manipulation, matplotlib and seaborn for plotting, and
argparse for parsing command-line arguments.

How to run:

python visualize logs.py --csv file <path to csv file>

--output file <path to output image> --metrics <metric1>

<metric2> <metric3> ...

visualize mol.py

This script generates images of molecules from SMILES strings found in a CSV
file. It uses pandas for data manipulation and rdkit for molecule generation and
visualization. The images are saved in a specified directory.

How to run:

python visualize mol.py --csv file <path to csv file>

--smiles column <smiles column name> --output dir

<path to output directory> --num samples <number of samples>

plot training metrics.py

This script plots training metrics from a CSV file and saves the plots as images.
It uses pandas for data manipulation and matplotlib and seaborn for plotting.

3

The script allows customization of the output directory and font size for the
plots.

How to run:

python plot training metrics.py --csv file <path to csv file>

--output dir <path to output directory> --font size

Evaluation

MolEvalMetric

This script calculates various metrics to evaluate the performance of molecu-
lar generation models. The metrics help in understanding how well a model
produces novel, chemically valid molecules that are relevant to specific research
objectives. The script uses several libraries, including rdkit for molecular oper-
ations, fcd torch for Fréchet ChemNet Distance calculation, and tdc for Oracle-
based evaluations.
Run pip install -r requirements.txt to install all the necessary pack-
ages required to run

How to run:

• Load the MolGen/MolEvalMetrics from Hugging Face using:
MolEvalMetrics = evaluate.load("MolGen/MolEvalMetrics")

• Get the evaluation metrics for the generated set of SMILES by
calling the compute method:
print(MolEvalMetrics.compute(gensmi = ls gen, trainsmi

= ls train))

cpp chem

This C++ library, exposed to Python using Pybind11, provides functions for
evaluating molecular properties and diversity based on SMILES strings. The
library uses RDKit for molecular operations and is designed to be accessible
from Python.

How to run:

https://www.matecdev.com/posts/cpp-call-from-python.html

4

https://www.matecdev.com/posts/cpp-call-from-python.html

rust chem

This Rust library provides functions for handling molecular data, specifically for
converting SMILES strings to molecule objects and retrieving their canonical
SMILES representation. The library uses the chemcore crate for molecular
operations and is designed to be accessible from Python using the PyO3 library.

How to run:

https://pyo3.rs/v0.22.0/

5

https://pyo3.rs/v0.22.0/

