import gradio as gr from transformers import pipeline sentiment_pipeline= pipeline("sentiment-analysis", model="cardiffnlp/twitter-roberta-base-sentiment") # texts = ["Hugging face? weired, but memorable.", "I am despirate"] # results = sentiment_pipeline(texts) # for text, results in zip(texts, results): # print(f"Text: {text}") # print(f"Sentiment: {result['label']}, Score: {result['score']:.4f}\n") def predict_sentiment(text): result = sentiment_pipeline(text) return result[0]['label'], result[0]['score'] iface = gr.Interface(fn=predict_sentiment, inputs="text", outputs = ["label","number"]) if __name__ == "__main__": iface.launch()