""" import torch import tensorflow as tf import flax import gradio as gr from transformers import pipeline sentiment_pipeline= pipeline("sentiment-analysis", model="cardiffnlp/twitter-roberta-base-sentiment") # texts = ["Hugging face? weired, but memorable.", "I am despirate"] # results = sentiment_pipeline(texts) # for text, results in zip(texts, results): # print(f"Text: {text}") # print(f"Sentiment: {result['label']}, Score: {result['score']:.4f}\n") def predict_sentiment(text): result = sentiment_pipeline(text) return result[0]['label'], result[0]['score'] iface = gr.Interface(fn=predict_sentiment, inputs="text", outputs = ["label","number"]) if __name__ == "__main__": iface.launch() """ from transformers import AutoModelForCausalLM, AutoTokenizer import torch torch_device = "cuda" if torch.cuda.is_available() else "cpu" tokenizer = AutoTokenizer.from_pretrained("gpt2") model = AutoModelForCausalLM.from_pretrained("gpt2", pad_token_id=tokenizer.eos_token_id).to(torch_device) model_inputs = tokenizer('An explanation of Linear Regression: ', return_tensors='pt').to(torch_device) output = model.generate(**model_inputs, max_new_tokens=50, do_sample=True, top_p=0.92, top_k=0, temperature=0.6) print(tokenizer.decode(output[0],skip_special_tokens=True))