File size: 3,973 Bytes
4a5ddda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a53ae2a
4a5ddda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a53ae2a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a5ddda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import tensorflow as tf
from typing import Tuple

def _inception_module(
    input_tensor,
    stride=1,
    activation="linear",
    use_bottleneck=True,
    kernel_size=40,
    bottleneck_size=32,
    nb_filters=32,
):

    if use_bottleneck and int(input_tensor.shape[-1]) > 1:
        input_inception = tf.keras.layers.Conv1D(
            filters=bottleneck_size,
            kernel_size=1,
            padding="same",
            activation=activation,
            use_bias=False,
        )(input_tensor)
    else:
        input_inception = input_tensor

    # kernel_size_s = [3, 5, 8, 11, 17]
    kernel_size_s = [kernel_size // (2**i) for i in range(3)]

    conv_list = []

    for i in range(len(kernel_size_s)):
        conv_list.append(
            tf.keras.layers.Conv1D(
                filters=nb_filters,
                kernel_size=kernel_size_s[i],
                strides=stride,
                padding="same",
                activation=activation,
                use_bias=False,
            )(input_inception)
        )

    max_pool_1 = tf.keras.layers.MaxPool1D(pool_size=3, strides=stride, padding="same")(
        input_tensor
    )

    conv_6 = tf.keras.layers.Conv1D(
        filters=nb_filters,
        kernel_size=1,
        padding="same",
        activation=activation,
        use_bias=False,
    )(max_pool_1)

    conv_list.append(conv_6)

    x = tf.keras.layers.Concatenate(axis=2)(conv_list)
    x = tf.keras.layers.BatchNormalization()(x)
    x = tf.keras.layers.Activation(activation="relu")(x)
    return x


def _shortcut_layer(input_tensor, out_tensor):
    shortcut_y = tf.keras.layers.Conv1D(
        filters=int(out_tensor.shape[-1]), kernel_size=1, padding="same", use_bias=False
    )(input_tensor)
    shortcut_y = tf.keras.layers.BatchNormalization()(shortcut_y)

    x = tf.keras.layers.Add()([shortcut_y, out_tensor])
    x = tf.keras.layers.Activation("relu")(x)
    return x


def build_age_model(
    input_shape: Tuple[int, int],
    nb_classes: int,
    depth: int = 6,
    use_residual: bool = True,
)-> tf.keras.models.Model:
    """
    Model proposed by HI Fawas et al 2019 "Finding AlexNet for Time Series Classification - InceptionTime"
    """
    input_layer = tf.keras.layers.Input(input_shape)

    x = input_layer
    input_res = input_layer

    for d in range(depth):

        x = _inception_module(x)

        if use_residual and d % 3 == 2:
            x = _shortcut_layer(input_res, x)
            input_res = x

    gap_layer = tf.keras.layers.GlobalAveragePooling1D()(x)

    output_layer = tf.keras.layers.Dense(units=nb_classes, activation="linear")(
        gap_layer
    )

    model = tf.keras.models.Model(inputs=input_layer, outputs=output_layer)
    model.compile(
        loss=tf.keras.losses.MeanAbsoluteError(),
        optimizer=tf.keras.optimizers.Adam(learning_rate=0.001),
        metrics=[tf.keras.metrics.MeanSquaredError()],
    )

    return model



def build_gender_model(
    input_shape: Tuple[int, int],
    nb_classes: int,
    depth: int = 6,
    use_residual: bool = True,
)-> tf.keras.models.Model:
    """
    Model proposed by HI Fawas et al 2019 "Finding AlexNet for Time Series Classification - InceptionTime"
    """
    input_layer = tf.keras.layers.Input(input_shape)

    x = input_layer
    input_res = input_layer

    for d in range(depth):

        x = _inception_module(x)

        if use_residual and d % 3 == 2:
            x = _shortcut_layer(input_res, x)
            input_res = x

    gap_layer = tf.keras.layers.GlobalAveragePooling1D()(x)

    output_layer = tf.keras.layers.Dense(units=nb_classes, activation="sigmoid")(
        gap_layer
    )

    model = tf.keras.models.Model(inputs=input_layer, outputs=output_layer)
    model.compile(
        loss=tf.keras.losses.BinaryCrossentropy(),
        optimizer=tf.keras.optimizers.Adam(learning_rate=0.001),
        metrics=[tf.keras.metrics.AUC(curve='ROC',name="AUROC")],
    )

    return model