diff --git "a/import_apple_data.ipynb" "b/import_apple_data.ipynb"
new file mode 100644--- /dev/null
+++ "b/import_apple_data.ipynb"
@@ -0,0 +1,443 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [
+ {
+ "ename": "AttributeError",
+ "evalue": "module 'tensorflow' has no attribute 'keras'",
+ "output_type": "error",
+ "traceback": [
+ "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
+ "\u001b[1;31mAttributeError\u001b[0m Traceback (most recent call last)",
+ "Cell \u001b[1;32mIn[72], line 9\u001b[0m\n\u001b[0;32m 7\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mshutil\u001b[39;00m\n\u001b[0;32m 8\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mgradio\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m \u001b[38;5;21;01mgr\u001b[39;00m\n\u001b[1;32m----> 9\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mmodels\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01minception\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;241m*\u001b[39m\n\u001b[0;32m 10\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mscipy\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01msignal\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m resample\n",
+ "File \u001b[1;32mc:\\Users\\Bjorn\\Documents\\HuggingFace\\Age-and-gender-prediction-from-ECG\\models\\inception.py:78\u001b[0m\n\u001b[0;32m 69\u001b[0m x \u001b[38;5;241m=\u001b[39m tf\u001b[38;5;241m.\u001b[39mkeras\u001b[38;5;241m.\u001b[39mlayers\u001b[38;5;241m.\u001b[39mActivation(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mrelu\u001b[39m\u001b[38;5;124m\"\u001b[39m)(x)\n\u001b[0;32m 70\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m x\n\u001b[0;32m 73\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mbuild_age_model\u001b[39m(\n\u001b[0;32m 74\u001b[0m input_shape: Tuple[\u001b[38;5;28mint\u001b[39m, \u001b[38;5;28mint\u001b[39m],\n\u001b[0;32m 75\u001b[0m nb_classes: \u001b[38;5;28mint\u001b[39m,\n\u001b[0;32m 76\u001b[0m depth: \u001b[38;5;28mint\u001b[39m \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m6\u001b[39m,\n\u001b[0;32m 77\u001b[0m use_residual: \u001b[38;5;28mbool\u001b[39m \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m,\n\u001b[1;32m---> 78\u001b[0m )\u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m \u001b[43mtf\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mkeras\u001b[49m\u001b[38;5;241m.\u001b[39mmodels\u001b[38;5;241m.\u001b[39mModel:\n\u001b[0;32m 79\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[0;32m 80\u001b[0m \u001b[38;5;124;03m Model proposed by HI Fawas et al 2019 \"Finding AlexNet for Time Series Classification - InceptionTime\"\u001b[39;00m\n\u001b[0;32m 81\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[0;32m 82\u001b[0m input_layer \u001b[38;5;241m=\u001b[39m tf\u001b[38;5;241m.\u001b[39mkeras\u001b[38;5;241m.\u001b[39mlayers\u001b[38;5;241m.\u001b[39mInput(input_shape)\n",
+ "\u001b[1;31mAttributeError\u001b[0m: module 'tensorflow' has no attribute 'keras'"
+ ]
+ }
+ ],
+ "source": [
+ "import numpy as np\n",
+ "import pandas as pd\n",
+ "import matplotlib.pyplot as plt\n",
+ "from scipy import signal\n",
+ "import os\n",
+ "import wfdb\n",
+ "import shutil\n",
+ "import gradio as gr\n",
+ "from models.inception import *"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 64,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df= pd.read_csv(\"../../apple_health_export/electrocardiograms/ecg_2021-10-16.csv\", skiprows=12, sep=\";\", header=None, decimal=',')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 65,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " −42,893 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " −44,534 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " −45,538 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " −45,409 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " −43,299 | \n",
+ "
\n",
+ " \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " 15355 | \n",
+ " −35,489 | \n",
+ "
\n",
+ " \n",
+ " 15356 | \n",
+ " −35,851 | \n",
+ "
\n",
+ " \n",
+ " 15357 | \n",
+ " −37,251 | \n",
+ "
\n",
+ " \n",
+ " 15358 | \n",
+ " −39,057 | \n",
+ "
\n",
+ " \n",
+ " 15359 | \n",
+ " −40,96 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
15360 rows × 1 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " 0\n",
+ "0 −42,893\n",
+ "1 −44,534\n",
+ "2 −45,538\n",
+ "3 −45,409\n",
+ "4 −43,299\n",
+ "... ...\n",
+ "15355 −35,489\n",
+ "15356 −35,851\n",
+ "15357 −37,251\n",
+ "15358 −39,057\n",
+ "15359 −40,96\n",
+ "\n",
+ "[15360 rows x 1 columns]"
+ ]
+ },
+ "execution_count": 65,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 66,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "ecg = np.asarray(df[0].str.replace(',', '.').str.replace('−', '-').astype(float))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 67,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "SAMPLE_FREQUENCY = 512\n",
+ "TIME = 10\n",
+ "NEW_SAMPLE_FREQUENCY = 100"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 68,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "1000"
+ ]
+ },
+ "execution_count": 68,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "TIME * NEW_SAMPLE_FREQUENCY"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 70,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "[]"
+ ]
+ },
+ "execution_count": 70,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGdCAYAAADnrPLBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAACUMElEQVR4nO2deXxU1d3/P7Mkkz0EAgmBAEHjGlQMiuACuKCtaK2t1mr9yVPrU+tK0cenaJ9KfRSsVWvFVmtr1dZabB+lta7ghlJQkUVZFJQ1LCEs2ZdJMnN/f8ycO/femTtzJ7lz7/mG7/v1yovJzA355txzz/me7+pRFEUBwzAMwzAMUbxuC8AwDMMwDNMfWJlhGIZhGIY0rMwwDMMwDEMaVmYYhmEYhiENKzMMwzAMw5CGlRmGYRiGYUjDygzDMAzDMKRhZYZhGIZhGNL43RbACcLhMPbs2YPCwkJ4PB63xWEYhmEYxgKKoqC1tRUVFRXwes3tL4eFMrNnzx5UVla6LQbDMAzDMH2grq4OI0eONP38sFBmCgsLAUQGo6ioyGVpGIZhGIaxQktLCyorK9V93IzDQpkRrqWioiJWZhiGYRiGGKlCRDgAmGEYhmEY0rAywzAMwzAMaViZYRiGYRiGNKzMMAzDMAxDGlZmGIZhGIYhDSszDMMwDMOQhpUZhmEYhmFIw8oMwzAMwzCkYWWGYRiGYRjSsDLDMAzDMAxpWJlhGIZhGIY0rMwwDMMwDEMaVmYYhmFspqsnhOc/2ok9TZ1uizIgaGjtwhNLt+BgW9BtURhJOSy6ZjMMwzjJo29/id++twWD8rKw9mfT3RaHPD949hN8tqsZ73zegL9dP8ltcRgJYcsMwzCMzazYehAA0NTR47IkA4PPdjUDAD7efshlSRhZYWWGYRjGZrJ9vLQyjJPwE8cwDMMwDGlYmWEYhrEZxW0BGOYwg5UZhmEYhmFIw8oMwzAMwzCkYWWGYRiGYRjSZFSZ6e3txU9/+lNUVVUhNzcXY8eOxT333INwOKxeoygK5s6di4qKCuTm5mLq1KnYsGGD7v8JBoO4+eabUVpaivz8fFx88cXYtWtXJkVnGIZhGIYIGVVmfvGLX+CJJ57AY489hs8//xwPPPAAfvnLX2LBggXqNQ888AAefvhhPPbYY1i5ciXKy8tx3nnnobW1Vb1m1qxZWLRoERYuXIhly5ahra0NM2bMQCgUyqT4DMMwDMMQIKMVgFesWIFvfOMbuPDCCwEAY8aMwV//+ld88sknACJWmUceeQR33XUXLr30UgDAs88+i7KyMjz//PP44Q9/iObmZjz11FP485//jHPPPRcA8Nxzz6GyshJvvfUWzj///Ez+CQzDMAzDSE5GLTNnnHEG3n77bWzevBkA8Omnn2LZsmX4+te/DgDYtm0b6uvrMX16rNx3IBDAlClTsHz5cgDAqlWr0NPTo7umoqICNTU16jVGgsEgWlpadF8MwzAMwwxMMmqZ+e///m80NzfjmGOOgc/nQygUwn333Yfvfve7AID6+noAQFlZme7nysrKsGPHDvWa7OxslJSUxF0jft7I/Pnz8fOf/9zuP4dhGMYaXGiGYRwlo5aZF154Ac899xyef/55rF69Gs8++ywefPBBPPvss7rrPB6P7ntFUeLeM5Lsmjlz5qC5uVn9qqur698fwjAMwzCMtGTUMvNf//Vf+MlPfoIrrrgCADBu3Djs2LED8+fPxzXXXIPy8nIAEevL8OHD1Z9raGhQrTXl5eXo7u5GY2OjzjrT0NCAyZMnJ/y9gUAAgUAgU38WwwwoFEVBfUsXhhfnui3KgEFh0wzDOEpGLTMdHR3wevW/wufzqanZVVVVKC8vx5IlS9TPu7u7sXTpUlVRqa2tRVZWlu6avXv3Yv369abKjJsoioL5r32OF1budFuUAUndoQ4s+/KA22IMKO5/4wtMmv8Onl2+3W1RGIZh+kRGLTMXXXQR7rvvPowaNQrHH3881qxZg4cffhjf//73AUTcS7NmzcK8efNQXV2N6upqzJs3D3l5ebjyyisBAMXFxbj22mtx2223YciQIRg8eDBuv/12jBs3Ts1ukonVOxvxu/e3AgC+c8ool6UZeJz5wLsAgL9fPwmnjBnssjQDg98tjczXe17ZiGsmj3FXGIZhmD6QUWVmwYIF+J//+R/ccMMNaGhoQEVFBX74wx/iZz/7mXrNHXfcgc7OTtxwww1obGzExIkTsXjxYhQWFqrX/OpXv4Lf78fll1+Ozs5OnHPOOXjmmWfg8/kyKX6faAty7RsnWLn9ECszDMMwDIAMKzOFhYV45JFH8Mgjj5he4/F4MHfuXMydO9f0mpycHCxYsEBXbE9WsnyxoGQrgcxM3+gNcUyC3SgKjynDMDTh3kw2k+WLDWlvmDeHTNETCqe+iEkLnq32wXohwzgLKzMZhBe0zBFiRZFhGIaJwspMBuH0zMzB3jv7YeWbYRiqsDKTQXhzyBwesDbDMAzDRGBlhmEYhmEY0rAyk0HYMsMwDMMwmYeVmQzCMTMMc3jCTz7DOAsrMxmELTMMwzCMjITDCj6ta0J378Aoc8HKTAZhXYZhDk+4ACEjO48v3YJv/ObfmPXCGrdFsQVWZjIIL2gMwzCHF+9uaiDRtPXJaA/B19bVuyyJPWS0ncHhDqsymYPrzDAMIyP/8fRKAMCJlYNwUuUgd4VJwkBbQ9kyk0EoGGb+/OEOTHvwPXy5r9VtURiGYQYM9c1dbouQFO8A02ZYmckkBJSZ//nHemw70I47F61zWxTGZQbY2sYwTBK8A+x5Z2Umg1BKze7sCbktAsOk5CcvfsaKN0MC+Q8H0guYFqzM2IzWtUTBzUSVgfUYyoHsY3qovRsLV9bh+Y92ormjx21xGIY0bJlhLENJl+FeR4xH8qOkNjuwNzwwamMwjFtwzAxjGU7NZigh+9Lm0xwlQ5I/W3JLxzADD1ZmbEarwPCClkEG2KmCSY3WehgK89PFyA2vUM7CyozNaJdYyQ+PDKNDdv1QG1AvuzLDzz7DOAsrMzajCwBm2wxDCNnjprTPFofMMEz/GGj7EyszNjPQJgjTN3pCYcx+YS3+/kmd26JYR25dhp8shrGRgWY9ZGXGbhST18xhxT/W7MZLa3bjv/7vM7dFsYzkugwH1DOMjQy0p4mVGZuhqsvIHi9BjZauXrdFSBvZ50CYXbgMw5jAyozNcNE8BgD8BCtSSR8zQ0iBoSMpwwwMWJmxGe2CS2nxpYbc266+JgpjE3xQYBjbGGjPECszNsOWGQYgapmRXGSqLlyGkZOB9RSxMmMzvOAyVJFclzEcFPjpYuRDOy9lbw8y0GBlxmZ0FYB5wWUY29C7cBlGPigt+ZRktQIrMzbDFYCdgQ899iP7SZJduIzs8LR0D1ZmbIaqNUbubSwC1bGlguxzIKywE5eRG16j3IOVGZvh02Pm4PE8vCH1bEkvIJMJtLWQZD8cDLQZysqMzXBvpsyhHU35a6IQRO4h1SH7+MouH5MZKK35A82KxMqMzXDMTOYI84BmFNl1Gb79jOxQmqOERLUEKzM2o8tmclGOgQiphYKQrALpA4C12UwEx5dhmMzByozN6C0zhFZcyTcygJYJlyKyTwFKLlxKjz5jH3zf3YOVGZvRL7iEIPAUEhBRRfbNNhGS6zLswmWkR+sKp3Q4GAhkXJnZvXs3vve972HIkCHIy8vDSSedhFWrVqmfK4qCuXPnoqKiArm5uZg6dSo2bNig+z+CwSBuvvlmlJaWIj8/HxdffDF27dqVadH7CJvCGSYTaDcK2Z8tisos038o3XVSngMLZFSZaWxsxOmnn46srCy8/vrr2LhxIx566CEMGjRIveaBBx7Aww8/jMceewwrV65EeXk5zjvvPLS2tqrXzJo1C4sWLcLChQuxbNkytLW1YcaMGQiFQpkUv0/o5wehySL7MQLyb2DUkT5mhpCbiTk8GWgKAiX8mfzPf/GLX6CyshJPP/20+t6YMWPU14qi4JFHHsFdd92FSy+9FADw7LPPoqysDM8//zx++MMform5GU899RT+/Oc/49xzzwUAPPfcc6isrMRbb72F888/P5N/QtqwKTxzaDcwyfddksg/pHQsM8zhCaVpSUlWK2TUMvPyyy9jwoQJuOyyyzBs2DCMHz8ev//979XPt23bhvr6ekyfPl19LxAIYMqUKVi+fDkAYNWqVejp6dFdU1FRgZqaGvUamSAbM0MA3sAyi+wKIqX7T0XWL+pbsH53s9tiDBiUcOy17M/TQCOjyszWrVvx+OOPo7q6Gm+++Sauv/563HLLLfjTn/4EAKivrwcAlJWV6X6urKxM/ay+vh7Z2dkoKSkxvcZIMBhES0uL7sspOH00c1CqM0NIVA1yr76UrJ6yywcA4bCCCx75ADMWLENje7fb4gwI2P3pHhlVZsLhME4++WTMmzcP48ePxw9/+ENcd911ePzxx3XXGX31iqKk9N8nu2b+/PkoLi5WvyorK/v3h6QBVb++3NtYBH0FYDqwH90eKA0jBVFDmgHdeqDdRUkGDpTmKIlJmgYZVWaGDx+O4447Tvfesccei507dwIAysvLASDOwtLQ0KBaa8rLy9Hd3Y3GxkbTa4zMmTMHzc3N6lddXZ0tf48VKGVcaKEgKqXx1EJFbtnN4jqrJ4kZKzdkkxUkhtIoUpLVChlVZk4//XRs2rRJ997mzZsxevRoAEBVVRXKy8uxZMkS9fPu7m4sXboUkydPBgDU1tYiKytLd83evXuxfv169RojgUAARUVFui83oLKJkYHoeFIRW3JdBmFNPAI/W/2H6sFLZihZYSnJaoWMZjP9+Mc/xuTJkzFv3jxcfvnl+Pjjj/Hkk0/iySefBBBxL82aNQvz5s1DdXU1qqurMW/ePOTl5eHKK68EABQXF+Paa6/FbbfdhiFDhmDw4MG4/fbbMW7cODW7SSbYzZQ5KI1nfCVoCiMsN3rLjNxQ2yhoSSsv2q7ZxKYAeTKqzJxyyilYtGgR5syZg3vuuQdVVVV45JFHcNVVV6nX3HHHHejs7MQNN9yAxsZGTJw4EYsXL0ZhYaF6za9+9Sv4/X5cfvnl6OzsxDnnnINnnnkGPp8vk+L3CQ4Azhza8ZTdJaKFyjSQfUx1BwV+uPqNwhuv7fD67x4ZVWYAYMaMGZgxY4bp5x6PB3PnzsXcuXNNr8nJycGCBQuwYMGCDEhoLzyBMwfVoaUyJzyErEdEhlRq9G4mHlFbIFSaQ3b50oV7M9kMrwmZg1JqthYq7jFalhn35LCC7PIBBleoa1IMLLTjKPt6Jbl4acPKjM1QqoWhRfaNDKC1mWmhJKvMKLz92orCAcC2w0HV7sHKjM3oFghCCy4BXYZUACjFlUz2OUApuJLCs68bTwLyUoBSuvtAu+eszNgMVcsMCYiOJ5V5IH+jSSIDSQU2dNkOr//uwcqM3RCdwLJvZACthUJy8UhCae+VfX4C8sd0UERvmZebgXb7WZmxGVKuEGJQreFDRVbZ9VmqMVOyQkk5pAKlOSq5eGnDyozNUK2FIfk+BoCOUgDQWtQEsisz2uWX0rMlK9oxZCuNPVA9cA0EWJmxGaqnHfk3MpoKAkBnHsheZ0a/UciN7PIBtAKqqcAKjHuwMmMzfMLJHGFC/mgtbEWwB1IxU7ILCP3Gy+uWPZA6cMkuX5qwMmMzpCazBtlP5QCt8dRCRWzZrXPhsFaZlXtU5ZYuikZIVmbsgZJlXvZnKF1YmbEZJcl3UiP5RhYHocWXiqiyTwFCJTxIoHUzaTuSM32HUosIycVLG1Zm7IZoBUjZNzKAWMwEJWGJwENqL+xmsh8eRvdgZcZmKJkZqUHVLEpFbtlrDVEZRwAkHn5F52ZyT46BBQ+kW7AyYzNUNXPJ9zEAdOORqMgq/RQgev9lhZJLhAqU1ijJxUsbVmZshlLzNmoLmN7qRUd2OpLKDaX7L7d0EbSPf4jYWiArlCxc1Nb/VLAyYzP69FG5J4tWPArZTJT8+pTmgYrkU4DUqZeY1YOAiCTQV4DnQXUSVmZshlKQolY5YDeTvVCaBwLZpwDdOkNuS5AYquMpM6TWKLcFsBlWZmyG0gShJGsEOosvpQJvAvkDgDWvJR9UuaWLQLX1isxQUmYGGqzM2AylmBnKlhnZ0XfPpSG47FOAUkdiLbLKKqtclKHyrA9EWJnJILJPbGoxMxStHQDI7BqyK7SUiuZRmJ9hQgcvKlByLw+0e87KjM3oJojkk4XaZKbUkZbSokYGQvdfi6wuHEnFIg277tyDlRmbIbXIamSV/VQO0Bpbiqde2a1zlO6/FlmlpugKlR19NhPjJKzM2EyY0ImcyiYr0PWPkVx2ycVLiOwKrfb+yz53KSgHZN22EsPj6B6szNgMpWh2fQCw5DsZaJ16qLjEKJnCKW2+FNYBCjJSI8z+ZddgZcZmKBVNklu6eCgtuLp5ILHcuiBwyRVaStlMFJRZrjNjP/qQSR5VJ2FlxmZk3riMKBqzvdzbWDyyWxSoHNBkls0IpTozFOBgVfvhYXQPVmYyiOwTm9rJgZJZnEo5e61ssiu0Eg9jUmSVm5Lblg40LLIDEVZmbIaqKVxyDwMAWsoXFcUrTGoO0Hm2KECpjAQVKCWADDRYmbEZSqbbMKFTOUDHdQPIL5+AFcTDFwpxPdTgOeoerMzYDKXDjuzyGaEkL5UO35Ssc2EaQwrA6GZ0UZAkUAlSp4TsB9iBDCszNkNpLlPLZqBUiI7KCY1SSwuF0FFBbukisEvEfjibyT1YmbEZ3QSWfS7LLp8BSmZxKosapWajVBREI7LefwrWI2pQnaMDAVZmbIbShhsm9+CREDICkY1CYtHiICUrAWEJiEgOSgkgAw1WZmyGVJVSYtkhlE49kounQis1m9Z8Fcg6V7k3k/3wKLoHKzN2I+vKlQBKmVcArYWCSjySLqhWdj+TBtmnK4WDAqXDARUUSqfZAQYrMzZDyXVDJeNGQElcMoqiLgBYbii5cClAJ5yaDhSU2IEKKzM2Q2kyy7zHJoJKVV2AzkZBKQCYkvJNQZkNUzp5EYFS+YCBhmPKzPz58+HxeDBr1iz1PUVRMHfuXFRUVCA3NxdTp07Fhg0bdD8XDAZx8803o7S0FPn5+bj44ouxa9cup8ROGwqLmICamZlSKimVsZVYtDiojCkVqCjclOAMMfdwRJlZuXIlnnzySZxwwgm69x944AE8/PDDeOyxx7By5UqUl5fjvPPOQ2trq3rNrFmzsGjRIixcuBDLli1DW1sbZsyYgVAo5IToaUNp/lLq8A3QkFEguyIroCInQGvzpSArpbpNVNCHzPCgOknGlZm2tjZcddVV+P3vf4+SkhL1fUVR8Mgjj+Cuu+7CpZdeipqaGjz77LPo6OjA888/DwBobm7GU089hYceegjnnnsuxo8fj+eeew7r1q3DW2+9lWnR+wSpkvuyC2iE0MlcSfKdTFAyi1PaHEhYkQhZkclAaP0faGRcmbnxxhtx4YUX4txzz9W9v23bNtTX12P69Onqe4FAAFOmTMHy5csBAKtWrUJPT4/umoqKCtTU1KjXJCIYDKKlpUX35RSUSoRTO5lRKUQH0DE3yz6OWvjUay8UrEfUoPQ8DTT8mfzPFy5ciNWrV2PlypVxn9XX1wMAysrKdO+XlZVhx44d6jXZ2dk6i464Rvx8IubPn4+f//zn/RW/byim30gHtSxCCjIKqFjoSFgQBLLLp0P+CUDtMEOBcDj2msfUWTJmmamrq8Ott96K5557Djk5OabXeQwpFIqixL1nJNU1c+bMQXNzs/pVV1eXnvD9gNL8pVY0i5LVS3LxVKgoXQBvvnZD6d5Tga1d7pExZWbVqlVoaGhAbW0t/H4//H4/li5dikcffRR+v1+1yBgtLA0NDepn5eXl6O7uRmNjo+k1iQgEAigqKtJ9OQUV9wIgv3xGKC2+VDZeUunObgvQR2Q9KFBx28ksmxFKsg40MqbMnHPOOVi3bh3Wrl2rfk2YMAFXXXUV1q5di7Fjx6K8vBxLlixRf6a7uxtLly7F5MmTAQC1tbXIysrSXbN3716sX79evUY2aG24sdcUnkECIqpQKfCm94rKKydAZ0wBGu47KoosETEB0FEQByIZi5kpLCxETU2N7r38/HwMGTJEfX/WrFmYN28eqqurUV1djXnz5iEvLw9XXnklAKC4uBjXXnstbrvtNgwZMgSDBw/G7bffjnHjxsUFFMsCpTgUSgX+ADrWDiMyy0qp3xElNyMJiIwhETEBsALjJhkNAE7FHXfcgc7OTtxwww1obGzExIkTsXjxYhQWFqrX/OpXv4Lf78fll1+Ozs5OnHPOOXjmmWfg8/lclNwcSnNZ30fENTGsQym4mshEICImAGKymryWCSrKIZVnCaBhkRuoOKrMvPfee7rvPR4P5s6di7lz55r+TE5ODhYsWIAFCxZkVjiboFSIjoqZWSD7eGqh4sKjtPiSsnrKLiAMmTcSP1vyShYPJVkHGtybyWZIbQ6EYhAAYmNLRKnVd/eWV04AupsuuaQ6ZFVsqCiHMstmhNqaOpBgZcZmSMUgEFIOAFryUpFVYtHi0Fu75JachJuJyFpFSSmgGtc3EGBlxmYoRbNTCwCmIKOAiqy0SglILqAGCqJSdIXKDgUldqDCyozNUHrwKPXlAWgV+aMyD6hsaACtjYKGkkjneaICJYV7oMHKjM1QWhT0C678cpPaeElsZoD8akEMStl3kosHgM7zJLNsyaAqN1VYmbEZKrESAK2TbgQaUgJ0AgF1G5p7YlhCdvl0ELj/sq9PAlnHLxFUnvuBCCszNqNXEOSezHSsBxEoVVemU8ND+1piQUHLzRgmMFn1c1RSISH382OEWrmLgQQrMzZDaS5TkhWgk0oKyC+fgOriK7vYkosHgJCbyW0B0oCSZX6gwcqM7dA4kQO0XAyA/OOphcrY0hpTOtl3BAwzUltjtGjl9HhcFMQCNEZ0YMLKjM1Q0swVSsKCTiE6gJAJX/Jx1CLxMMZBaVwBuTdhrWyS6zLkkioGEqzM2AyFE5mAWgAwpWwWEJkHlPRZqm5GWWWlUuBNZtmMUJJ1oMHKjM1QOpFRWcwElOI7qEhKKfuClKy613LKSmY8JRbNCJXA/4EIKzM2Qyk7hNIiYUR20alkitFSEOnISkFUCtYjgNZ9p2SZH2iwMmMzVAI/AaOssktLS1HUV1eWV1Z23WQGCid0KgHV2vHzSB4BLPM4DnRYmbEZnVIg+cymsOBqoaBwCagoCVSaDQK0ZKXQKkSvb8srsLySxUNF4Zb9MNgXWJmxG0JzhMqDJ6BkwqWyWFDYdAUKFQ0RRBQvIs8TJVeo3tolr9yEhtQyrMzYDIXAP4Hc0sVDSfmik3hFJ5VUbun06PUuOSWnkgAgs2xGqOjblBREq7AyYzNUAj8BOj5zAQUZBVTmAaUYL1qWObclSA2VgxeVmk0AaNx4xD8/0o+rBViZsRk6J3LozcwEJjMJ030UKsHKEosWB7UYL4GsspKxdFJSYk1ey4bxfkt9/y3CyozNkFkgIPdpLBFUFASAjhWBQkNEgeS3XEX2uSmgYpmVWTYjYSINr4xuJnkltQ4rMzZDaVKEw25LkB6UlC8qshLSZUjEoQBS72E6iIhJ7ICY+DWTeViZsRm9K0Tu6UwlWE1AauMlsgDLPke1UHEzxscjuCJGSqjEddGao25LYI04ywwVwZPAyozNUFIQKClegNwbmBEqBQmpuu5khkqmCJV2BkSGEwCd9T8uZsYdMWyFlRm7oWQ90L6WXVgY64y4JoZFaEwEUtYuIgHA8RuFnMIqRG4+pcwbKgdEKtbDdGBlxmZknsBGZF4UEqHbzCQfZypDS8WKANBRvGSfmwIqafnGdUrmKSuzbFooPfdWYWXGZmhVKdW8dk8My0g+nDqoGJEITVeyAcBWRF21oxGf723JjEAmUB1PmWHroXuwMmMzlBQEKouZgErAIkCpuipbuzJNKrHX727Gt59Yjm889m9s3d/miEwAredJi8yikln/+6Bwyw4rMzZDZRMD6NSZEJCyInBwpe3IPI5a0h3TJRv3QVGA7lAY727anxmhEkBl4423dMkrLZEyM+xmYlJDaYpQm8+U5KUiKhWzOEA33T3V5rtud7P6+gsHXU1U7n3ceLokhxXIKNzG72mInRRWZmyGVKqr6TdyQsslQmOj0BZOlFlOQP7nSZBuJ/KdhzrU1zs0rzMNWw/th86YyitbX2FlxnbouG6oFCETpOtm6gmF8cb6ehxsC2ZMJitYGduunhC2HWjPuCxG0r3viqLgnS/2YVN9a0bkSf67Na8lnrFx2Tcprt3T1Kl+v/Ogc8oMFZdIX6wI7cFefWsBh6CS7m4cGpmfJ6uwMmMzVEzhAC0rEpD+eP5qyWZc/9wq/OBPn2RGoCToY6dSC/4fT6/EtAffwxvr92ZSrDjS9Z2/t2k/vv/MJ/j2E8vR0d2bIakSQyVmKp3Nt7mzBx3dIfX7/W1BxzZhKhtYvHKYXO5tB9pxxi/ewdcf/QA9IWd7thDRZRK4Ql0SxEZYmbEZSoFVVBYzgWLy2oyXP90DAFizswkHHLbOpDMNmjq6sWLrQQDA3z/ZlSGJEpOuQvvOFw0AgNauXny2qznF1fZCZqNIQ7g9TV0AgKIcPwAgFFbQ1NmTCbHioLJUpSvmy2v3oLGjB1/Ut2LNzqZMiGQKkSHlCsBMatLdcN2EyuYgSCcOpbM7hF2NMfP9Vw3OpbwC6Y3tFxqXzW6Ny8EZ0nM1ftkQk/XLfc66msgo33Fimstd3xK535WD8zAoLwsAHFO8lTSth26Rbt2eTftiQdSb6h2u3UPE2i2xaH2GlRmboTKZATo+c0E6Mu5u0scebN3vbDyKbuNNIfe+li719R6HlZl0PRpaBXFPc1eSK+2Higs3HaXrUHvECjM4PxulBQEAwP5Wp5QZzWtHfmNfSU86bTzXdgdjkAA6pTnSzbijACszNkPKzUQoOwgwyphcXu2mCwB7m91TElKNbb1GKWjp6kWnJoYi06SjIPSGwtirkbXecWWGxnxNx5LQ1NENIKLMDI0qM45ZZrSv5R3OtGXb1xIbv50OZocBsiuFMeIDgOnDysxhDJXFTJDOxmt01zh12lVJQ1bt4hv53jklIZyGgtDQGkRIswo6rsw4+tv6TlwAcJJrG6PKTEleNkoLnbXMpHPv3SSdgOru3jDagrHAdKdj5aAbU3mh1O/KKhlVZubPn49TTjkFhYWFGDZsGC655BJs2rRJd42iKJg7dy4qKiqQm5uLqVOnYsOGDbprgsEgbr75ZpSWliI/Px8XX3wxdu1yNlDSKlRM4QDkftoSkI64u6OWmWx/ZIo7rcykszkYlZeD7c7Jms6YHmrv1n0vNmKnoPJspWOdFW6mQXlZGJQbiZlpcSEAWObxTKePUJNhTjqtzKTrulcUBVv2t6HXxawrK3T1hPC9P3yE7/xuhaOW43TIqDKzdOlS3Hjjjfjwww+xZMkS9Pb2Yvr06Whvj8UvPPDAA3j44Yfx2GOPYeXKlSgvL8d5552H1taY33PWrFlYtGgRFi5ciGXLlqGtrQ0zZsxAKCTfoKbT2bm5swfn/+p9fOM3/0ZXj/N/CxX/riAdH79YxI6vKAIQsSo4STobxX7Dgtvs0GYGpBdUbZTLSTkBua0HWvrqZirKjWQ0OTWuVOpMpZNGfMiozLQ6rHCnsf4DwF8/rsM5Dy3FzX9dk0mx4ogbwxSiLvvyAJZ9dQAfbTuEpZuda7mRDhlVZt544w3MnDkTxx9/PE488UQ8/fTT2LlzJ1atWgUg8jA98sgjuOuuu3DppZeipqYGzz77LDo6OvD8888DAJqbm/HUU0/hoYcewrnnnovx48fjueeew7p16/DWW29lUvw+kU5F1TfX12PTvlZ8WteEFVsOZlawBKS7gO082IE7F63D+t3OpuQK9OXXk0svTrzHlBcCcN4yk07fK+NJ3FllRvM6xbXCEjO8OEf3vVNQCa5PLwA4MoaD8rJRHLXMOKbMaF/LO5y6NTUVYjzFHO3sCTlaDyndcfzLRzsAAK+vr3dWzrgWEckFX7njkPr6011NmRCp3zgaM9PcHNkEBw8eDADYtm0b6uvrMX36dPWaQCCAKVOmYPny5QCAVatWoaenR3dNRUUFampq1GuMBINBtLS06L6cQq+ZJ2dNXaP62umaHUD6m8P81z/H8x/txO1//zSDUpmTzkIhNtqxpQUAgKZOp09omtcpBG/tiixiI0tyAQBNHQ4qM2lsvI1RuapK8wEAXT1hRy2KEu+3etJyi0SzmdxQZnRiyTu66fRmEuM5YlAuAlEX88E25579dNxMiqLoqn5vaXAu4zLddPc6TSB1ncNB1VZxTJlRFAWzZ8/GGWecgZqaGgBAfX09AKCsrEx3bVlZmfpZfX09srOzUVJSYnqNkfnz56O4uFj9qqystPvPMSWdDVcbae901D2Qnm9fURS8vj4y3l/UtzruYhAyqK9TXCtOaGPc2njTmAfCMlNZkgfAWctMOpbE5qiCOLIkFz6vB4DDihcRt2g6AavCLTIoL0tVZlq6nDmhU3Ezx2+85sKK574k33nlEEjvcGCs/lzX6GQrC+sKIhCLQQSAukana2FZwzFl5qabbsJnn32Gv/71r3GfeTwe3feKosS9ZyTZNXPmzEFzc7P6VVdX13fB0ySdWIm6Q9oJ4rwyo5i8TkS7Iehrx0EX+gilMbZiURs9JA9imjgVWAlYV7xCYQWt0eyLysFuWGbMvzMiLDMledlqsKqTFi8qdVGsKgaKohhiZtjN1F/U8dRYupx87tOZmMbyEU4eaNO93drs0HqHy1xYxRFl5uabb8bLL7+Md999FyNHjlTfLy8vB4A4C0tDQ4NqrSkvL0d3dzcaGxtNrzESCARQVFSk+3IKqwFg4bC+wZyT6bgqaZzMDhhiTtywJFl9AHtDYXVDGOLaCU3zOong2jRSYZlxcvFNxzonlKxBedlqtdrGdnfie2TGasBqW7AXPaHIhyUuu5lkDq5Op/S+mh2Wn+W4cgik15PNWCDTuMZmkvjUbHNZe0JhHNC46g61d0sZs5ZRZUZRFNx000146aWX8M4776Cqqkr3eVVVFcrLy7FkyRL1ve7ubixduhSTJ08GANTW1iIrK0t3zd69e7F+/Xr1Gpmwaj1o7uxBr8bBeshBv65Ab5lJPjmN6cJOV6oFrJ/MRW8bjwcozs1yR5mxGI8gFJecLC+GRuuMONWbB4BOtFTrU5NaEyULhTmRMdUqY5lGHwDu2K9NG6uyCeUwJ8uL3GyfC8qMxIOoIZ1spoSWmS45A+qNa6ix9EEmSUdBNFqKe0KKY67QdPBn8j+/8cYb8fzzz+Of//wnCgsLVQtMcXExcnNz4fF4MGvWLMybNw/V1dWorq7GvHnzkJeXhyuvvFK99tprr8Vtt92GIUOGYPDgwbj99tsxbtw4nHvuuZkUv09YXR6MmSCtwV4Ee0MI+H32C2VCOt159xtSHJ0MqhNYzWYSi0Jxbhb8Pq+6qDnpvrFq8RALbVFOFgqizQbbHFwo0glYb9TEdxQEorIG3doo5N2I4+MREsuqxnfkZQOAakno7o3Ed+VkZXYtoOJmSieNWMQgleRnq807WzqdfJ40ry26wgN+L4K9YRxwUpkxfp9E1kaNKzTYE0J7dwiH2rvVdVUWMqrMPP744wCAqVOn6t5/+umnMXPmTADAHXfcgc7OTtxwww1obGzExIkTsXjxYhQWFqrX/+pXv4Lf78fll1+Ozs5OnHPOOXjmmWfg8zm38VvF6ibWqIm6r2/pinTL7ehBWZFzf1M6D56x+NQBN5QZiwuuWCQGRzcJty0zyeQWmUyFOX7kqwqCc4tvOr2ZhMVoUF62RplxJ5uJ0uZrJmtMOYzM04JsP7yeyD1p6ezJvDJDps6MdbRxXW4892m5baNyHTG0ABv3tuCQg8Uy0yvsGDvE9IR8aD/UiUPtQTWrURYy7mZK9CUUGSAS/Dt37lzs3bsXXV1dWLp0qZrtJMjJycGCBQtw8OBBdHR04F//+pejGUrpYDXdubkzpu2WROMPnLZ2pGMSFbKJLBYnq9QKLFu92mNjC7ikzJi8NiLcTEW5MWtHu0t1MVK5HZo0G4UrVqQ0d9wPvtyPbz++HMu3HMiMQP0kduKNzE+v1+NonAeVRrNx8R1JnqjYsx+LmXHPzWQtoP6IYZHyEU6GGqRTVblRczgcki/6hzl/mE0F92ayGaunx0ZNGXOx6TrpMwX6ZpkRRehccTNZDFjWmpqBmDLjZCyKVVmF77koR6PMOGqZsXY6D4djmTfuuZnSsyTcuWgdPtnRiLsWrc+cUAmwbJ1tj1m6BE4q3lTcdn1xiQzKy0ZRjvOHGC1WY9COGBqxcBx0MLC2r667IdE1tdHhvcoKrMzYjNXJqH3ohDLjtLUjnQdHKDNHl0WUGacVLyANN1NbYjdTq4QnNCFTYY5foyC44+NPRmuwVz3JF2utSC65mVJNhvZgr1r6YNuBdkd731idp40d+nkKwNGgVd28tChzKB2/pE1YHc+eUFh127qVmp1O5e8mQxHKYG8YXT3OzNN06sxoLTNuBFVbhZUZm7HquhGnhZK8LPUE0epwhHg6FUCFMjM2eopwtHZDFKtp70bLjMi8cTYQ0GIAcFSmotwsNWamqyfs3OZr0YIkTpG5WT7kZPlUN5OTczYd5furhjbd904W+orbKFLEzAg3MwB1LXBirqZbt+fFVbtw/N1v4DfvfpUxmRJjbeMVyoHHE3menO51BaTnrmvUFKGMeu8dPXBZRaS7l2hqITm5llqFlRmbsZo+qrXMFLqlzKSR6ircSlXR9gCtwV7HT2lWg2rFSUKYRMWi5uRpwmo8gjabKT8QC/g0FinMFHo5k/jNO2LKNwBNsLJ8cUgAUG+o27TdwSKP8Rb8xNI2ajYJgZNzVe8KTf0sP7xkM7p6wvjlm5scffatVgBW19TcLPgcjj9SZUtjTdXGoKkHLofWKKtB6oA+tktkiLnluksGKzM2Y9W9IDaHQblZKFRPuc5OkHAaJ7P9BssM4GzwJ2DdJXJILe4WWSBili/54juEhaswx4+A34csX+SI5lTcjFVrR5Mh86bQDTdTGgGrDQZlZn+LewXJzIhZZjTKTI5zrpF0lMOunpCuCuwuByuWW37u2/UWWTcs3nodz1zynlBYdSdHDrRCiXW+lQWQwtKtKSHgRlC1VViZsRmrBxa1AJlG23XXzWROV09Ila2iOBe50ZRRp7XzdC0zg1U3k9v1JpLFzMTcTEDM4uGUMmNVoW0yKIhCzlaX4ntSufEaDNVU97c5qcwk/15g3HwBaDaLzI9rOr2ZtA0RAWDrfhebIppc12RQDt1QZtItmCgKezqpxAJ9C6ou0QRVuxFmkApWZmzGahaLtjR8oQuWA8BoEk2tmWf5PCjK9bvitgGsx8w0GmJm3E7RTEbMzRQZ0/xsZ4OArYZNGa0IarCyo647664NY3uQ/Q6Wird+oNG77gBoCr05nc2UnC379TFITvZmiy+9n/g6NbYjT+9e7uwJobvXqQDw9GLQinIiLrFChw+08enu5qjxnbp0d46ZOaywdNLVuZncs8wkk1UE/w7JD8Dj8binnVvNEjFWVnXlhGYxAFgTMwPA8Swhq+4wo2VGzFkn3UzptF4Qlpljh0f6sjmpzMSV3090jaIkdjM5qHhbjZcCgB0H9W4lo+Urk1iOQTIEVItnCXDuoGjVehwrQBl1hTt84EqrWGb02S/OzY4dZNkyM/AJW5zNOtNdrksBwBatSEKZKS10z9IBWDOLB3tDavDsYFWZicUkOVbHQfs6ya+MuZmilploELBjlpk03aJGN5NrvZlSXCsW4KPLIgHrDa3ONXING4wAieZcZ08Iwai1QOdmcjTzzvqzYFQGHVVm0jzECPey3+dFfnbkeXJqbdWnZidZ/9sNMWiOH2iN1q7EsobCirrOD9Jk3nLMzGGAFWtHsDeEjuiGW6IL/nIvBiUZotqjqP7oRs8TwNrYik3M64ktEEL5CitOZglZW9TUCsA57sTMWHU1asvEA9DVxEmnx1d/SEcPFc+SyL5zsi6SFXeYGM9szYYLOJ3NpHmd4lqhzBwXtXQ5a5mxFjTTqHHdC5w+eKUbM1PiUpKC8ZE1kztyAIy8dqtpr1VYmbEZK3O52bDhupearXmd5ClULTMFUWXGpQltZWy1Fi9vtHhDwO9Vs4QcC7CzIKyixLrPijmgum8camlgNQDY6BIRcgJAR49TLrHErxMhFO1RQ3IBuLv4JhK1UdPvxuPxqO876cINp6HNCGWmZkRUmWlxztJlUZeJaw8BOB/8b9Ui29RpdIU7LGeaSldBwI8sn1edn109YQR7HXQxW4CVGZux4rppVH2QWfDqgr9cdNskue5AtGO2cDO5VQVSN54pMkQGaYIqdXE+EvnOO3tCar2OQrcCgK2a8DXZd0BEQRR9upxK0bcaAA7EnqXKkjwAkUXZKRejFcvMQYNLROBkgGU67QyEm+7o8ogy42QHeqt3zdiFHHDD4mFtTdXuAQA0oQZOrU/WRlXE9gg5C3K0cUhyBQGzMmMzVhYIs1NuW7DXsQUXsKYcADHLzFBhmXGp54mVqrpikTXbJNzIFjC7peIU5vd6kBd1NTifmm0tbqrRkCni8XhUV5MbwZXJCPbG4lFGDY4oM71hxTEXo5XU7IMGa6dAa5nJ9Fpg1YoAxCwz1dGmiMKy4ATpproPKXDPzWQ1SN2YRu58nRn992ayCjmFMqPNvJItCJiVGZuxskAYM0PEAuZkTAdg/cQjekaJRUKO7KvE0h8yBNYJnH4AreiJzZqO2cLV4EbPI4GVdHetkuh0L6mwReVbOy+HFAQQ8EeWObEwZ5p4y0y8sIk2XiAWM9MbVtCZYfedVUW2PdirrkvV0YDqrp4wuhxyL1ot8HZItXbFFEQ33UzJMNsDHDsYxGXcJZa82ZB1BWgUbrbMDGysnKaM1VS1JnsnOybDoklUdTMZYmYcr4tjYfFtStC8D4CrbiYzjDVmAE0xOpfqTSSiqycWsK5VErUWRWewNl/VqsoBP3xej7oQO+UasbKhGYPqBblZPvi9Ir4rw+Nq0c0kgn3zsn0oK8xR+wg5ZZm1Mp7B3pA6DwcnyA5zx82U+nAQK3XgcM8jy5aZBMqMCw08rcDKjM1YCahsNEwQjyfmZnBSmbFaZ8IYAOxGRV3AagBwdGw1QYCA89Yk/ak3seQtBn80EPNJu1IBOMWC5vN6dIpXrHCe8/E96VRVHpQb2dwc23wtFHkTbiajZcbj8TiW3WjVzSRcTMMKA/B6PY5ntFhp3Kkr7KmZo7HsMBdi0JK6mRIX+HOrzoyZqNoaMwJZ+zOxMmMzVhqNGf2lgDvuBSt1O0JhRe1CLRZet2oNWAmu07ar1+JmuXAzWVXLjEaZKXTYdWMloUVbjEybeaMqiG5UK06CGFchn9h8HbPMWBBUBACXGpQZwLmTr9VgVRH8O7QwcpgR1jnHgoAtbLyiEW5JXrZhjrrbJsCMOGXG4YxWq9W0RWyU1jIja3o2KzM2k04AsNYcqlpmHErJBaxl3Bxq74aiRHqIqEXoXCvyp31tLbhaIE4+zrlvtN8kvkZYtsRCBjhfjM5STZQEWSIAUBCV2znLjLUYD+O4Fgs3k0NBq1ZOvcIyM9jgZgKcOyxYTXUXlhmhzBSpyqE7MUiJnn3T7DCH4zusZzPplQQxpm3BXvSGMt96wcqYArEyIoM0By4hMyszAxwrCq/oIaLVdgsczmIBrJW0Fi6mwXnZ8Psi08WtIn9W5N2vbhLGAGCnY2ZS+87Vgnm5CVw3EvVmMhbME7gpa7Kp0GqwzAxy3DKT2i2ixswktMw448Y1hoCaYcxmVMdToppNh9oTu+0c7yNn4cDVpan+bGwPAjjzPMVliJlclygAmC0zhwmKBbt9oiBVNSXX0Wym1BvugQS+fXHacbL6a4TUp569TRGT+PBBObr3HS9KZeGaZkP1X0ATVOuGtcNEapHNVmIShyRbTRyj+87pk6SVR0LEeJS6aJmxms1kTABQx9OlgOrEMUjxmUwAHC9IasV1L6wyfm+svEGWz6ta551Yo6zEIQHaOjOx9T/mZnQuPd8KrMzYjJXT4yFDV2cAyMt23jJjpSZCLPgvphyITUxRnIuXAPQ9bxLJ29UTUs3NFcW5us+cL2ueeqNIFDPjtJvJioIgOlCXFekVRKfrzFjdfNUAYGGZcXjxjUt7NQjb0d2rpl0ntMw4FedhIV4K0PZmM1pm3Ep1j6e+OTJHy4uMdXucLclg7MuViEaNZT5h9WeHm4wmw+gOA5yPQbMKKzM2YymuI0EMQkHA+WwmK4pXgyaTQZCT5UN2tHaHk+nZqRY1senmZHl1Dx+gdTPJ0yYgFtsR72Zq73bG6mUlYH1fS2QOmCszztebsNLvStxzsfg2ShIALKwIOVmx07gWpzJwrGTcATHXrbDMOO1msKJw740qM8PdPsRYSQBRg2pNXGJOt7IAYLZKHWiNL+7IbqbDhFRVakNhRZ0EWrN9ngvZTFY2y4YWffCfwNnuvhFSKV97oi6miuJc3YkH0HTOdiE9Nx3LjNbq5UTPIytKl6llxkU3kyXLTK6wzLi7+RpFVV23+YG4eQo4Z5mx2poptqHpEwCaHesjlNolsqe5EwBQYXAva12hjhwOLIxpU4KgWsBZy4yVMQ32hlSFWpt1xwHAhwmp6na0dPao1yRMzXYym8n0mxjGtExBLDvIJctMgsHdG13QjPEygPOWGSvLZiJlxumeR+m5mRKb8N3ozZSMWGp2ZFxLHHYzpYpHMKv+K3DKmmDFiqAoihqs7Faj2XgbQoJnv8nEMhOdA4oCtDmwtlrRlxo7zCwzzh0QrWXcxWr3aGthsZvpMCGVZi4mcmG0C6nAjaJ5VtLIVTdTkfHE40JJ6xQLxV7Vb54b95nTWQ1WxlYsBtoAYG3Po7agsyc0M1eDcDOVx7mZYoHgTmA5ANiYmu10NlOC93Y3deLXb32J9mBvwoaIWpzKZrLkCu3qRXc0VVgcaIodqoMjSOVe7uoJqYeuESX6Z1/rEndG3tTPU6KquoAmvseRmJnUD5OZBdHpIpRW8ae+hEmP5KcddSHLT5zm6mxqduqT2YEEMTOA84F1QOoaDntNTM1A7NTT3RvpKZOTFR+rYCdW3EzqCT3BXGju7EGbAy7HVK67tmCvumiVFSd2M7lRuydZjIexaJ541kTn7ESuHTtJ1EvosseXY09zF+pbOlFVmg8gvnyAwI06M2aIDa0g4FefGaeVmTi3neH7L/e1IaxExtP4LAGRtepAW7cj89SamylWhFKLk20CrDSajAV+68dU1G3q7Ak5spZahS0zNpPKzFhvYrJXs5kcTM1OhaIoCQOAAXf6M+k23gTjbGZqBoCCbD/EHubIombyWtDZHet3ZHQ3ONkmIFUcwbb97QAiPnOtBQlwo86MNdNMfDuDqCIbCme8eSOAhDd8T9RquHjDPrXOlLllxqlNLbUVwRgvA7gQAJzi+y/qWwAAR5cVuhqDBBhd4YmvMbrtBKqS6IjSFa9wGxEp+cb+YYWB2FoqU38mVmZsJlXdDpFCaAymzHcjmymFpeNAWzfagr3weICKQUZftLM9T4DUiqLYMBLFzHg1NR1kMOOK2i3ZPq8qlyAWWOuAm0n7OoHIWw+0AQDGlhbEfaYNrrTSsLK/WHGLAPENPPOyfciOunSdyGiKu/eab9u7e2MtNwx1ewROVa21VjQzfuPVKjNO3Pf4YFX995vqWwEAR5cXJvz5QieVBAvXGCsqC5xUulJZuwDzeEk3+nNZgZUZm0m1OYhgSmP8Qb4Llhm9rPHCbtkf2cgqS/LiTIlOd6MFUiuKqpspgWUGcLb/iZJiImiDQI2nSSdTnlPtRVsaosrM0Py4z4ScobCCrp7Ml2C3UhcpHFZUS5GI6/J4PLGWBg4EASfLZurqCcdabpi5mTQpuplUFqy4QsV6NUxjSRaWo96woloXM0mqIdi0L6LMHGOizKiZjI5kCWlem6g2psqMg3F9Vorm1R2KrKcjS+LXU2HtFOuYDLAyYzOpHrx6EUxZbLTMuBwzk+BzocwckWAjc6NzdrJkps7ukBpYZxxbQaGDcT6p3EyxiqXxG5qT8VOperRs3Bsx4R9VFr9R5GX7Yq47R6xIyZVZIJKxIv4EbYn4kjz7g4AVRcFXDW3oNGzoqaxyjQkqgGsRSndvWMmoW0w/RxPLvKcp/oCQn+1TM+5c2XgNnwuFu7os3noIOGzx0L42mQaibo+2ECkQk9MJa4cVq9yupg4AwMiSvLjPhCIm/hYZYGXGZlIVohKLg1kBso4MbGCRjT5eg059Ko/ESxwxNH6RUGNmHNjEBMk2CWGVyc/26YrQaXGygFaqU+8Bkx5SgLOxKKlO/ut3R5SZcSOL4z7TZl45YUWysgCLDSvb79VZE0UGhp3KzAsr63Duw0txzR8/1r0fF+NheEMossbUXIHWLSauzQSpykgA2votMWXG43HWzZDMJdLR3au6lxO5QoGYxcOJujipnvueUFi1ZsRbZuxPzW4L9mLbgfa49xMFqRvZ1Ri595UJLDNi/xJhEzLAyozdJFlww2FF9e8aT7p50ZgZuzewg21BnPXLd3H6/e/ETepUp4ivhGVmWAJlxo2ieUkWX7UC6KD4gnmCIgezb1Jl3gh5E7nE1CwhRywz+u+1ou5vDaK+pQseD3Dc8KKEP++snz+1WyTWykAfjyLSYBsTKPWtXT249pmV+OZv/42vGloty/Psih0AgI+3H8LW6LNilBOI3yi2Rp9Ds2wmj8ejbnQiAD8TWBlPtRClIQ5NVWZsVA67e8MI9sZbopIdYrYfiFgPSvKyTN12YpxFnFomSXVAFIcYv9eT8aJ5wd4QLvnNvzHtwffwxvq9BjmTu5mCvSHsFsrM4HjLjFBmMjk/04WVGZtJ5l6oa+xAW7AX2X5vXAxCgabRpJ1+8lfX7cX+1iDau0NYtHqXXtYUv0eYb49MoMy40Tk7mVtMWLyGm7iYAPfMzYkQC4UxsBrQ9GdyxNphbsL/MhqLMGZIviqTEbFRJFIS7MZaiwh98K8gWdXShxZvxttfNGDNzibc9rdPLT1/vaGw6oYFgHW7m2OyGX7czKJkbNypRcSo7G/N3MnXSnyH6mYyJgDYbJlZv7sZE+5dglPufQsb9jTrPouXLPbOzkMRZWb0kHhXuEC4c0Q180ySyhW6X9MewOs1VCm3uZ3Bv786gK+ia/hzH+7UfZbKyvnF3lb0hhWU5GUlXFNFNi5bZgYwyWq3fL43lkKoLZgHxIrmhcKK2h7eDv791QH1tXbBTSSfdhHv7A5hd3QhS+pmcjCbKdnzl8zSIXBSAUsVjyTG1ljkC4ikPgLOuJmSLWrCH24MVtcilJkDGXSHCKyo+C2GtGyBSINuNAQsdvWE8KJGyf90VzNW72xK+XvqGjvRrXlOhcUViB/ToEnci1lqNgCURTfgfRncgFNVAO7uDatzwCyb0Q5lRlEU3PF/n6GlqxctXb34zbtfxX2u/z72OhZ/Et99XDBMtXJlfuNN1QxXKIeJ4vrEYau9O4TeUP/3gBVbDqqvP61r0pVhSBXX9Vl0rxg3clBCS7ewzIgAcUVRbJG5P7AyYzPJTjsb90SUmWOHJwqmjJ0k7Qz83LwvdnrULrhAcpOoSMktyctKaA7PlJWjqyeEX7zxBf7wwdakKZnGz5K1MhA4qYCl6LyguvwS+aOLVZeIGz1aYt+rp8gkG4UoUuZEVoOlflfCMmNQZtRsJsN8/fdXB9Da1YuK4hxcfGIFAODVz/Qm+USIE69AWAiA+Oc+0eGkMMcfd6DRIiwzYgPu6O5FneZ32IFu403w+faD7VCUyEHLWIzOzpoo7395QA00B4D3Nu1HKGx+r7XfHrAwR2NjGbm2sb0bP//XBjz5/hbb+zWlqoUkXIxjS+MtSUW5WRDGGjue/Q17YmPaGuxVY2CA1EXzPqtrAgCcMCI+Vg6IHXD2NHdif2sQ5z68FMf8zxt45K3N/Za7r7AyYzPJJvPnUWXi2ATxBz6vB7nRgEW70h27ekLYfjAWJ7O3pQs9Gu05lOTEU5fCfFuoiT+x0y321LJtePy9Lbj31c/x3ub9pvIZiXXNdd/NFB8zoWd/axC7mzojsSgV8XMhpiBk3iyeyM30/ub92LinBQdNKhRrGeyoMqP7LuE1xhozArP+TB9ujZxepxw9FBdFlZnX1u1Nucl9GY2tEYG6WnO78Ue7ElhmklllgJg1YV9LEF09kdiHMx94F4vW7Er6c+mgW6sS/Lnro6fz4yuK4k7ndgYA/27pFgDAzMljkJftQ0d3SOfCS3YnDhg6eidCdTO1BqEoCu76xzo8/e/tmPfaF1i4sq7f8mtJVTNPFKGsSqDM+LweDM4X7sX+P/vaMQQiYQ4xOZPHda3fYx74D8RCD+oOdWLea59jy/529IYVjEjgNncKVmZsJtmJXMRJjEkwkQFNrIRNlpmvGtqgKJF4gSyfB4qiD9hKFi+xP+o2MDPfFmmqqtrpFtOeit/5vEH3WTLTqNhMyi25mTJrmUml2322qwkAcOTQArUWihY1DqVdv1Fkouuv8b+sO9SBa57+GF9/9APVhGzMutAyJLqJiKybNTsbcdvfPsVbG/dlQFYrlhl9jRnBIJP+TB9tOwQAmFg1BGdWl6Ig4Ed9SxfWRu+RGV9FLZ5nVpcCiCnTEdn0wnUleD6SuUWAmBl/T1Mn3txQr1pYF7zzVbIfSwt9DFL8gK5TlZn4Dc2ulgbrdzdj+ZaD8Hk9uO6ssaiJ/q71Gpd4spooMWXGXDkU87e7N4ztBzuweENsbv7OZuuMVYus2R5gV8pzS1eP6qKsHV0CQG89NP7NWlm7ekJqvFyNiWVmSEFAncOL1uwGANx/6TicX1PeL7n7Axll5re//S2qqqqQk5OD2tpafPDBB26LlJBkmnm9ScE8gagC3GFTd9fN+2KZU2Jx3NukMTXGTejY96nMt/nZPtUkapelo6GlS2duXr2zUS+fTlb9z4pFbWiSE5pTLRiM9924uX26K7JQn1g5KOHPi/LhIvtiT1Mnpv7yXRx/95v4R3ThSJeGli784YOtaGjRxw0YN4odhzrUsRVuyWQbxRBNpkhzRw/+45mVeHH1Lvznnz+JC+TsL1YMgLFO5AbLjLAgaSwzLV096qY5cexg5GT5cM6xwwAAr69L7moSmX5Cmalv6VJdI3GZIQksM2a1kARjo3FqW/a34a8fx4I3t+5vt83dlMptJ8ZmXIINzS7LzHMfRjLCZpwwHCMG5aqZk9s1mZfxbibNOmXSGkBLTpZPncNPvr8FvWEFY0vzUZjjx46DHVimiSvsL3qlMH5QhTKTyDIDaJSZflpmtkYtQEMLA6iJWn91ykySZ2lXYyd6wwoKAn5UJJmnE8aUqK/PPXYYrjh1VFwWoZOQUGZeeOEFzJo1C3fddRfWrFmDM888E1/72tewc+fO1D/sMGZBdV09IdUUb+YKEVWA7WowKPz61cMK1MDYvUnM4VrUE0+S9FG7Mxre/zKyqIjMrq372w1Ba7FrtePcGwqrLpFkVgSn0slTud02RDeJE0xMuIOjC29XTxgd3b14eMlmbD/Ygc6eEGb/bS1e+WxP2jLd+Pxq3Pvq57h14VqDrPrrtBuvCFg39mbRySqUmbZuvLmhXrV8hBXgkbe+TFvOZFizzMR3Igc0QaCagNpV2xsRVoDRQ/LUfl5fqxkOAHhtXb3pfQyHFfXZmnxkKXxeD0JhRd2AjFaORG6mZO5QIGbG39cSxIdbD8Hric3tz3bZoyQmO3iFw4oac5HI1WBH/6iunhBejSqNV5wyCgAwZkgkDXj7QXOXiBazZq1GxHj+9eOIW+nyUyrxzfEjAAALV9q3jyR79Js7etR1ylSZKbBHmRGZqEcMzVdTq/XKjLlV/qA4GBYGkjZlnTm5Cv5oa4O7LjyuX/LaAQll5uGHH8a1116LH/zgBzj22GPxyCOPoLKyEo8//rircj27fDsufmwZ/rhsm/qe2WQWi2jA71VPNUZUy4xNbibhMz1yWIF6EhSBskCCmBnN61jHVPONrNSmB0/w3qaIW+l7p42G3+tBZ09ItWYB5ovaofZuKArg9ZjX7gC0cT6ZtcykCq4TmUxm8Uj52T5k+yOP5oHWbrz1ecQsXlWaj7AC3PLXNQkDpM3Y3dSJldsjVq4VWw/q4luMi5q24qz4O5LNARFwvauxA69Fa1lcclIk9uTtz/fp5pudmMWmxSwz+mdMWCbbgr2qG/fDbZF4mYlVg9Xrphw1FLlZPuxu6sSaaBCkkb0tXejoDsHv9aCqNB9l0fERf2vY4FVK5IYdlSSVGIhYPrRl5KcePQznRq1GG/fao8wkK/C59UA7OrpDyMnyJgxWtcMy8+4XDWjt6sXw4hz1HohnYocm1i/e0hl7fUjtc5VcmTHW9ZpxwnBVgVqycZ+63vWXZAr3tujfVFYUMC11YJdlJla9vUCNY9Fa5ZNlssasXcnH9NSqwVj232fj/f+aZqqcOYn0ykx3dzdWrVqF6dOn696fPn06li9fnvBngsEgWlpadF+Z4EBbEJ/tatYF2eo3h9hrNdumOMdU27U7ZmbL/lgFX1EXQHsyTZbyeNCC+XaYjYW9ekJhvB8N+D3vuDKMip7QhLnUKJ/2tfj9QwoCapn1RBQ51HAuVUaDUNDMTucej0c9ab7/5X40dfSgIODHG7POxBWnVCKsAPe++jn+/om1YNDP9+jn/+odMfddfLBq/MabbFEbE918Gjt68N6myP276exqnDpmMMIKLMtohVTppIC2aJ5+s8gP+NWUdxFf9eHWWLyMIDfbhwuifv8/fLA14e8Q8QRVpfnI8nnVg4L4f41SJrLMjDdxMWo599gy9fU1k8eohQs/32u9sF8yktXtES6m44YXwZ8g68oOZUbEWnzjpBFqzZXR0ed+h4X4jt5QWFVezaopCyaNjd3jyUcMwciSPBxXUYQTKwehJ6Tg/1bZM0+TOZm2RTNEk238Q9XA7/6lkQt31tihBRg+KJFVPollJureTmaRFZQX56iZgm4jvTJz4MABhEIhlJWV6d4vKytDfX19wp+ZP38+iouL1a/KysqMyCYeaG0anVlchxovk8S8LJQZO7KZekJh9XRzxLCChIFlIeMiofNFW8kSiH/wdjV24Ia/rMKtC9fEnS56QmFTRe2jrYfQ0tWLwfnZOKlyEEZHTaO7GhObRvXByqnjZQB9l2fj324nyXz8VnpIAbFxFzVQThs7BAG/D/MvHYcbpx0BAHj0nS8tBS9+aUgj/kqT5WBc1BLNvWRzID/g1wWzVg8rwJHDCnDFqZFn7oWVdbaNdargSsDcMgMAZcWieFoX2oK96oZ92hFDdNddPyUyvq+vr8fK7Yfi/p+vDMUkxWYhyuobx1QoiONGFOOWs4/ErHOrcXyCLDYjt55TjStOqcT/zDgOZ1WXqvWeEpWn7wvJYtBEvJNZAGh/lZmmjm68G7XECncPEGtq2NTRo1pQzWZPpGt35PWgFBvq2ccOw0mVg1AY8OO26Uep718ZnaePv7clLp6sLyTTt3dEXWdjkljlxLonUrhDYQUrthzE6+v2pqXgbNOkgIvqzfs02azJrMexeMnkCqJsSK/MCIzWDEVRTC0cc+bMQXNzs/pVV2dv+p0gUbqn2YKrZtskKUCWn21fS4O6Qx3oCSnIzfJheFFOwiqYSSd0W6yrsxnDDCWtQ2EF339mJV5bV49/rt2D2X9bq14rahFMuHeJmg4b+70Kfvd+JD3z6+PK4fN61KwkfZZIYjms1EMB9HEUmUzPjjfhxl4LpTY/26daChIhTqhrogXcRKCpx+PBzWdXoyDgx67Gzrgg6USIzVdYrbbprF3J4zsKAv64julGtAGiIr356+OGY1BeFnY3dWLp5gazH02LVIUIgVg8VKJARPHs1bd0YdWORoTCCkaW5Malkx5dXojLakdCUYDZf1sbt2GLwPpqocyofWoi1lezMc3J8mL29KMx69yjksYiCErys3H/t07AtWdUwePxYHT0RF93qMOWAmVKkvEUbQzMXKH9VWZe+WwvekIKjh1ehKM13a4Lc7JUxUS4YxMdDpo7elRFM1XNHgAI+H146UeTsfpn56F2dMyteOnJIzFuRDGaO3tw56J1/S4zkawW1gELBf6Egrx1fxvag7246g8f4ru//xA/+stqTJr/Nh5avCmljOGworHM5KM0P4BsnxdhJXbwTGbl3G/BKi8j0iszpaWl8Pl8cVaYhoaGOGuNIBAIoKioSPeVCUQ5cnHSTjTJWrt68MTSLfg4mgKaLHU4ZpnpvzIjTuNVpfnwej0Jq2Caneq7ekKqQpWOm2mxJoUUAD748gDWRYMVn1q2DTsOdqCrJ4z7X/9C9/88tWwbPvjyALJ9XvzH6VUAYi6YehPTqHashd/cLFhZkO33qgvlvkyWiTdsDdrvhLuxPIm7EYg3RZ8RVWaASHbG2cdE4ieWGmrxJEL0G5p+XOR50Z7sjfEdxg7QqfzmAPCN6Mk6L9uHb9eOVGX89smR18ZS6n0lmSVBICwzxbnxiqKwhO1q7MRHW0W8zJC46wDgfy46DiNLclF3qBM/efEz3XwTbh5RLyoWjxaZU0Y9Q6RmB/zJlcJUDC/KQbbfi96woiob/SGcxNQl1gnhnjYiLF/B3nBCN1oqhIvpm+Mr4j4T1pldhzrj5YyKevnvVuD651YDSB0vI/B6PXFKT5bPiwcvOxHZPi/e+rwBb2rStvtCMjfTQfWAaL6mjizJRbbPi2BvGD/88yp8uPUQcrK8OG54EcJKJDU/lUtsb0sXgr1hZPk8GDEoF16vR41tE/Mmfq9S8Opne/GDZz9RM8mSySkj0isz2dnZqK2txZIlS3TvL1myBJMnT3ZJqgjFufq+NIlOEH//ZBfuf/0LvP1F5HSaLItBZDO125DNJGqZ1IyILLjGKphAYu08HFZUBSLb5zXtQB35P2PmS0VR8ES0+NXNZx+pntAXrdkNRVHwr09jGThr65rUTf2rhlY88MYmAJENRJjSxTjt1QYAa3639nWjxSBAINbuYI8mGK4//GnFdtz2t0/x3Sc/VP/GZAenerW4X/LiUtp+WKOH5MUFYZ5+ZGQTNlq5jChKLPPmvKgys/WAWYyXPgAYsLagXXxiBZ7/wUT86+YzdGXvr5wYCbB8d1ODzl3YV1IdmhVFMc1mAmKWlM37WrFCKDNjB8ddJ37+sStPRpbPg9fX1+NP0aaSvaEwNu3TKzMVhpiEkEFDFBliAX//lluv16O6IbRxen0lWTaTWCeERddIYcAPoYun2x5k6/42rNrRCK8HuOSkEXGfV5bEu5i19GjuAZA6XiYVR5cX4rqzIoeoJ6MW4r6SzBV60IK12+/z4vjomr3sqwPweIA//L9T8NqtZ+L2qHvs4SWbda00jAjL66jBeWq8k3HdS2SVv/H51Xjr833qszHUwkFGJqRXZgBg9uzZ+MMf/oA//vGP+Pzzz/HjH/8YO3fuxPXXX++qXCWieV1HYt+uogDvfKE3sZclczP1MwA42BtSu85+WqevZTK0IPJ7W7t61ZNUyCBwsCeMs375Ls59eCmAyKk8mfVALKzbDrTjw62H8OmuZgT8XlwzeYx64nr50934ZEcjdjd1Ij/bp8YKvBUtiPfE0q3oDoVx9jHD8L3o5gfENnt9BH7i3UykO5p1zdUiNp7dNpxs39+8Hz/75wa8uHoXVmw9iJv/ugZA8iJfe9XifslTc8+qHqpmNM04YXjcfTgtGtC4tq4pzpqiZW9zF9qjmTdnHTUUQMTcLX7GOKJGZcaKZQaIpCgbe3iNHVqA048cAkUBnv+o/9YZvVskgRU02Ksu0oliZkRGy/ItB7E2mql0xpGlcdcJTqochDlfOxYAcO+rG7FxTwu27G9Hd28Yedk+jIrOf2MAcK9hp1AtM1n9X26F28cOZSZssvEqiqK6o81cIl6vR3WTpuuyFXVzphw1VD0QaRGWmbrGxJaZg4Y+YCU2BKBeM3kM/F4PVu9sUjug94bCeGN9vZqqbIVk7hurgbUzTohZq/7faaNVq+wPzhyLYYUB7G3uwtufm1uQRCaT1rorLDO7m0ysXQn+H7bMZIDvfOc7eOSRR3DPPffgpJNOwvvvv4/XXnsNo0ePdlUuETPTGuxFTyicsIy9aCApSGaZKYimZvelN9NbG/dh/D1LUPu/b2HhxztVf7Ko/liU61c3R7UehkHe7Qfb1YJJQOrJLApc7W8N4hdvRFxHl00YidKCAM6sHorSgmwcaOtWY2fOPa4MXx8XqeOxdFMDWrt61Iq/N047QrdhGzeIiLyaX655nY5lRiyUdlhmzOq9xBtwY+/UW2i7AEQUsyevrsWPzz0KN59dHff5qMF5GF6cg56QgjVJ4maEu3H0kDyUFgRUS5sobR4X3xHnZurfgnb1aZFn9C8f7ex3LFjY5P4LxCaXl+1LGOdzTLQnmkjlP2FkccKu5Vr+4/QxOO+4MvSEFMz+21q1fMDJo0rUDBzVJRotnGcMeO6Muo1TxR5Zoao0doDoL2bKYVuwV1Vqh5m4mYCYRSSdPkK7mzrxbNTKdfWkxOv3SINlxqgftBvc8FbdTMkYVpiDyVHF9vX1kZCGZ5Zvx/XPrcJ3nvzQ8v+TzNolDl2pDgjXTBqN/77gGMw+7yjceeGx6vs5WT588+SIJetfSWpNxXoAxsIr1PTs5sSWmURwzEyGuOGGG7B9+3YEg0GsWrUKZ511ltsioSg3SzW1Nnf2JDTd5RqUmWQn8oKcvllmunpCuOPFz9DRHYl1+clL6xDsDWPMkDwcHT2NejzxcTPGRdf4e1M9dAUBv6ocrK1rgtcDXHfmWAARX7QwIddFfd+XjB+BKVHrwPItB/HS6t3o7AnhiKH5OHlUie7/FhtEa7BXzWrQniYaWoN4cdUuhMKKWtU1Vb8bAGpk/+7GTnT1hHDjX1bjrAfexRvrUzcXNLLWpA5JsgBgq5YZIFJb5NZzqxNugh6PB6dGa3N8uC0+40YQK5wYmQci5X1nNLMiLjW7V6/MpFK6UnHeceUYW5qP5s4eLPy4f9aZVCnvopeV2eY2vDhXt8Brs2jM8Hg8mH/pOAzJz8YX9a2YH433OlMTwzSsMAdZvkjhvB0H23Hvq5/r/g+hGOTaoMyIMvjbbVFmEr8WLqaCgF/XANeIiKfRHjhS8dDiTejuDWNi1WBMO3pYwmvUmJnGxBtv0FA+wK5+QF+PpuS/Fi3k96/oQcvYVDQZZnF9PaGwGluZ6pDo93nxo6lH4JZzquPirC46QdRwajDdJxK1oRBKu1nMTCKDklWrrCyQUWZkxOf1qL75po7uhIutMdU1mbZbEOhbV+fX1u3FofZuDC/OwTWa087NZ1frrB3GKqhGU6MxM8GKZn5m9VD19UUnVuiyH644dRSyfJHfP7Y0H2ceWYrjK4owtDCAju4Q7n55AwDg8gmVcW6U/IBftSIkqt/RFuzFbX//FD/753rVMpPMFy0QaZGb97Xit+9+hVfX7cXOQx24/e+fpdUssS3YG5fyLEiWbVDfEqs31F9E8OrH28zjZkTwr4jBGWWoBmqcA8aNIlnAuhV8Xg9+OCWi4P7+g62qG9SMVz7bg3tf2ZiwiFmqLs9qTEKSk/qt5xyJ/Gwfxo8apBZNS0VpQQD3fXOc+n1Ollc9IQORv1EoSX+OlufXIlx6digzwnVgh2XGrMBbKheTQMwNqynDG/e0qIG/d379WFMXtqhYu2FPCw60BeMrKhvm0MgEnef7wvTjI5mUG/a0YMv+NviSJJy9+0UDlm+Jb4Ng9uiLNcrrifUJ6wvHVxShqjQfwd5wXAgDEFnDRTyRtsJ4TJkxC6rWf5/t96qV2KnAykw/Ef7axo4erN+tL06mQImrNpusqFtBH2NmRLGyb9eOxM+/UYMXfzQJi26YjG9FM0sEIphP1GUxZrIYm/ClSnUGgOvOrELl4FxUDyvAf19wjO6zI4cV4I8zT8HMyWPw+2smwO/zwuPxqNYZAMjyeeLkFAhzs3CJJDKNvrx2TyxmxoJl5oSRgwAAX9S34lFN0762YK+60Frhs11NUJTEQZ2JFrTeUBib97Vib5NI0e//AiwsM2t2NpkqCaplpiyizBhLmxvHtFuTiuPxAONHDeq3nJeMH4GyogD2tQTx4irzMd66vw23LlyLPyzbhp/9c33S/zORwmilGuwFNcOx+mfn4aUfTY6zmibjgppyPPCtE3DB8eV46ppT4gJjTxkTuRdLN8Vnl4k6M3a4mcaWRrsVN3YmDQK1gpnXTlhuk7UGATRB+tHDRt2hDrUFRiJ+/fZmKEokBsysLxmgV06mPPAuOgwJEdrsqYDfi8lHmMc9pcPg/Gx1bfrbyjqsjpZFMPLuFw34j2dW4nt/+EiNrxEYq6oLRKmLwfnZqnuyL3g8Hnx9XNSCpGnK+++vDuA3736FuxatQyis4MhhBToX6ghDzIxZxp1gaEHyVgYywspMPxEBvXWHOvCtxw0ViRW9YiKyScxQi7qlYZlRFAXLt0RO5qdHfb61owdjvMFtA8QWJzPLTFOn3jKRqt8JEAnyXHr7NCz+8VkJ4w/OrB6KuRcfrwsO/c4psSKG366tNLUAjYnGB2w/EM1qSJT6HuxVLVlWfOdlRQGdWfqUMSW45xvHAwAWrbFeBVS4mERjQi3xgeAKHn3nK0z/1fuq4mWHZeaIofkoLchGsDecsF+PoihqqrwYf61lZsOe5rhsKGGZ+d5po7DwutPignr7QsDvw3+eFSlE9/CSTabtJN7csE91fb71eUNcYHOqCsAHVWUm+SYc8Pv6tFBffkolnri6Vn3OtIh5sDWBxUSUWkhHeTKjrCiAvGwfQmFF12unL8RZZjt68NN/rMObGyIxI4mCc7WodXuau/D+5v2Y+uB7+NqvP8Bj78T35Pp8bwve3LAPHk+kGGAy8rL9+FrU5dPeHcKnhg7mnd2ROTq8OAfv3j5VVdDt4NKoxe137+urP2uV5yXR4NuwEnH3aDGzdqVTVTcVIu7w3U0NaA/24sVVu3DVHz7CL9/chFeiCs43TtSnvIuEitauXnzw5f64OkXGOE2zlHyZYWWmnwiz7+y/fRr3mYKYy6h2dAnu/Pqxcddo6YtlZvvBDhxoCyLg96Y8RWtjZhpau/CJpqw9ACz8WF9cMNXJTOD1etLaHE4ZMxhP/8cp+N9LanD3ReYNykYNjoztPa9sxNuf70satObxwLTnlf46D74XDUrN8nlw14XHYcYJFfB5PVi/uyXupGXG2uipbXxlvNKYKJvpaU3/roCm3k1/0MbNvJ+g3kxDaxDNnT3weuLdTDsOtuPCR5fFne6FhWfC6MGYODZxDZa+cPVpozG2NB8H2rqxQGMR0yKCawGgu1effgskD64ErKW+ZopTxgw2Nct3qkXz+q/MeDyetFxNobCCBW9/iWf+vS1pnISiKHj+45147sOdeG1dVJlJ8fyPiFpQth9sxy/f3KQqog8v2RwXT7YgquB8fdxwVBv6JCXi0e+OV+fsjoN6pU3M0YpBuSkDuNPlazXDEzaAfWl1zKIoGsUCwOf1ekuUtnaX1j1m59w8bngRRg/JQ7A3jMfe/Qo//UfEijl+1CCMLc3H1KOH4tozq3Q/kx/wq0VZr37q47i5Y9xzEmUDyg4rM/1EWw8kEUKZmffNcSmbcYkA4PbuXktl6gFNNdKygpRFubS1Zu74v8/iPjee9OxeKLRMO3oYrj5tdNIFXnTQBYCb/7omabyFoiR34Wn54Vlj8dy1E/HaLWfipMpBGJyfrabovvJZ6kBgRVHUJoQnJVAg4+sNRSxIgopBubaZcC+Idnn+2yd1cQuSmBtjhuSr4yyUmS37E2+Eoilidj9rohjJ9nvxPzMiiusfl21TY3kErV09WBVVrsV9FyX1BWYd6QXa/mdOk+Xzmj7fws1kzGzsKzFlJrXi/fxHO/DQks2Y+6+NaodqgVG5WWGw0qVSZo4tj8QJbdjTgnW7I2UZzqwuRVgBfvLiZ6qi/EV9i6og3ZIgMy8RWT4vaqJlHBoNsWxiPPtbtycRPq8HT888Bbedd5Tu/dv+Hjms9oTC+Lw+Nne3GOLmzJZtEQNmR7qzx+PBZVHX/OPvbUFnTwhnHFmK/7t+Mt65fSqe+Y9TEwZuaz0D/zbE+xi9AdkpKirLCD2JJePik+IrWAoUJRYzU5ik+JxAnOwUBeiwWFVT7RNjwR2gbWnwXgLfvpFMKjNWOE1jGejoDumqCxvJSaOGh9frwRnVpboToijyZ5ZurWVXYyf2twbh93p0pfyByKkxUSC4dnGw04R7/vFlGDEoF/tagvj248vxqeZELMZL2zG4YlBu0oVKVWYysJhNOybS+bk3rODulzfoNtN/f3UAvWEFY0vzMf34iIvhy33mG0WiPUPEA9iV3ZIuo1K4O+xKdRUFFLeaKKRaXtRYFP65Vj+3jXVmRGkIQbK0bACoHJyrW9e+XTsSv75iPAZHM7/m/msD2oO9uC+a3XXhCcN1rQtSMUhT+kJLp01FCM0YUhDAzedU43dX18Z99uW+Np0101ivyuhmUhQF2w+0q+UwrLjurfD9M6rUIpBVpfn49RUnpTzM/fKyE9VSHcaGssaDkHBlUYKVmX4yrDAHn/5sesLPunrC6IlWprOizAT8XjX7x2rczBZD07tkJGo2acZRZQWocOGEq2VMaT4e+c5Jlq69JYUfPhXTjy9Dts+Lzfva1AaEZogaPsdXFCEny6dWugWAn/1jQ8LU7ALN/T/KgpndKgG/D49+N7aBXPa7Far84l/tBpLl86oBhIkQ1WrttswIfjbjeGT7vfj3VwfV0zoAvPtFRLmecvRQNQbCWAE2VQXg3dFU3hE2Zbeki0j7N8MuJfaYaOZUojgpLe3BXl28yaodjToFUt/rSolTYM2q/wo8Ho8a25Ll8+D6KUdgcH62GoP2/Ec7cfzdb+KDLw8g4PditsHakQqzgP6gjW67ZJx/fDmeu3ai+v3upk6sj1oLj4oG1B9sD6rNGwGDm0kBVmw5iKkPvqfG4NiV7pyX7ce/bj4D/3f9JLx2y5mWLD5ZPi9OPyKx61jEzORl+/DLb5+AGSewMnNYYtYCvTUYscp4PLFWBcnweDyauBlrhahEB2QryowwGxu7WRu5ffpRePFHk6WIZr9k/Ai1D5EZJ1YOwo+inY77SlFOFs6PLsx3/WO9aZAqALwRLaolKnP+Z7S2DgC88EldwrYWYgE+qqwA/3nWWNhJ7egSLPnxWTj9yCHo7g3jp/9YD0VR4gonCsyKlQGZczMJRg3JU7tS3/fqRnT1hBAOK3gv2oxy6tHDUCkqwB7SFzZM1sSvszukBgCPHGRfQGg6GC0vRuXAroqq4n5+Ud+SNL5uw54WKErEGpDt8+JQe7fOlWysM2MsI5HKzQQAP7voeNw07Uj8ceYpqhI644QKPPG9k1ULWUHAj19fMT7tYHKzuDKRmp0py4yWM6pLVevrJ9sPqfEyZ1YPRZbPA0UxtoiJ/awCBS98oo9DtLOqbk6WDxPGDE4rsNwsqFtYv2oqinHZhEq1DQIl6ElMCNHBtyDbbzkdT5zgrdSaURRFY5lJfdq3+iBVDs5DYYLeNm6RrAUEAEwaO8QWxeuO849GQcCPT+ua8M3fLo+zDOxt7sTP/rkeizdGshmEa8pvKEiRKABYpD7++dqJasq5nQwpCOBX3zkJedk+rK1rwm/f24JdjZ3wJkivTpb90Z1hZQYAbph6BEYMysWe5i48tWwbPtvdjH0tQeRn+zCxarAqX11jh2lnZ6ORRriY8rN9KErQZNIJtAHz155RhRMr9S5IK9ZZK5QV5WDEoFyEleQ1hkR/tpNHl6jVurUF4Ixja1SMUmUzARFF5fbzj9bVmwIisVzv3zENH9wxDZ/89FxcUGNuDTTDbLxiMTOZtcwIJoyJKI+fbG9UC9KdMLJYtVyJbulA/LNvXJXscjP1FbOkDmGZyQ84M6aZgJUZm0jkpxcT3+jzTYYonGclo0nbd2f0kNQbpM/r0VUuNeOcY5OnkDtNdrLqVYBtm1fl4Dz89brTUFYUwFcNbZi1cK264De2d+Nbv12uNhz87qmjcEw0ANLYiffix/6t+15b4j6Tp8lhhTmq1eOXb0aad04+ojROMR2aRKkN9mYuuFKQk+XDf51/NIBIAOMfo5leU48Zhpwsn/osdXSHdIUMjRvF/tYgfvjnT7Bk4z61GNiIEvuCq9NFa5nJz/bBY9jKrFhnrSKCOe995XPctWgdXjcE9wIxN+MJI4oxdmgkzmaLJltPpxwqSlx6rpXswGT4vB5UDs7rszsoUbNQIFZnxo5eV1Y4NVpDaPmWA9gQbRUwbkSx6jbcb9K8N1IBXn/P3ci002KmzIiwhnxihfK0sDJjE/d/a1zqiywgmrdZiZkRp6wxpflxG6oZv7u6NqnbZvZ5R0lX+fGIFC60/i66WsaNLMb/XT8Zedk+fLKjEe9FU54ffedL7GnuQuXgXDw98xTM+2aN+jN+g9XNWL1WW+Qr037+/zxrrC4Q9SpNPI8g2WYviuZl2oR/8YkVGDeiGG3BXrwc7TYuMjRysnyqi2O3rtGo5j9QgF+9tRlvbtiHuS9vcD34F9ArM8ZNLD/bZznbzgr/b9Jo5GR5sfVAO/7y0U786C+r1T5ngs+iysy4kcWqi0cbNBw2WGa0hy4nXDipMEsPdkLh1jIhqsxs2d+OYG8YxblZqCrNV+/3/jatwh37OQXx7lA76sz0B7ODjDg8y7b2p4P7M3aAcGb1UJxrYtGYOXmM5f9HmPmsWHO+TCOTSZCX7cf3TottcEZLTTpZQU5xSYoeOnYqM0DEQnPlqZExeuK9LTjU3q12fZ73zXGYdswwnUKQyr+sLb+e6ZTHnCwf/vT9U/GdCZX4+cXHm5r3b5yWPMYo0yZ8rzfS80go7+ccM0xXGVoE8YqgXiA+YFUUf9zd1KlaZtzMwNOeevMDPp2PocAmF5Ng7NACPH/daZg5eYw6bg+8+YVqAWzt6lEVl3EjinFEAsuMduPdebBDvb4ox48nvhefyeM0Zm6moBoz44xLZGhhQB0/IBKz5PF4YgkVGstMyKDNGNdxq7W7MoVW4T61ajCOiSYHtKkBwKzMMICaiWTk/OOt+4sLoqbVdCwzVoJ/tUw7ehgeuuxELLphMv70/VN1n8lYX6AoJwv3XlJj+vlgC20M0uXaM6uQ5fPgo22H8F9//xTB3jDGjShW69FoMbvvAlGxNNvv7Vcpc6uMKc3HL759Aq6ZPMbUCnP79KNxaRIl0czEbyc1I4rx9u1T8MJ/nobfXV2rk1VYWLSWGa1fxJhK7HYmE6CvQN0bUnROpkxY5E4eVYK5Fx+Px793Mopy/NhxsAMfR5uOitYqIwblYkhBIKFlRms06NVswv+6+QxMSxF07wRmlhkRM5PJuC4j2pYrItNHKAZaS6zRFWpcx9124+Rm+9QDxK3nVMMbfeZa0ighIit0JZcQsxN6Or7ddKoAp5OWrcXjMe+HlO3QaSddkjXps7OcuWB4cS4uOWkE/r5qF96ONnS79oyqhMqB32vNMiOD6V7g8XiSBng6tagNK8xJmAI8wtA5GYjfKLQn883RInxuupm0biSjtdBOF5ORSPn/4Xjhkzr867M9mHTEEKzb3QQAaiaOKLR3sL0bTR3dGJSXbdoQ1e0NV1BkGgDs/PP0/dOr0NrVC7/Xg2+cFDkEJLLM6KtUK2n32XOC31x1MnYe6sDkI4ZALGcic5DdTAwAIMtkwcpJQ0FQ+zNZeAjSScu2ijEzRxbMTrY3n31kRpSZyP9drW5KE0aXqNlLRlJZZoI9zprFrZJsM3DCgpSMkQksM/qAVb1yo7VEuMn8S8fh27UjcfFJFdDqvca4KruZcWLEWvDG+nr0hmK9usZFS/PnB/xqZeR7/rUR63Y1m/a6kmVDMwuYdjpmBoisP/99wTG4bfrRqmKayDITMtSZ0Vpmbpp2pEPSJueso4bie6eNTngwG56iVpLMyDFrBwhmQbh9scykSs0+1N6tZnqMHZq8TUIqPJ7YicInQW2ZRORmJx5DMwXDDkYNycObs87Cut3NOP3IIaan61TZM7GuyXKdHcwURNFsz01E7EuymJlEVbLdrlr93VNH4bunxgdd+1JY7/rLpLFDUJKXhUPt3fho2yG1WJ62QvURQwuwt7kLL63Zjfe/3G9ael8WC6KZQh0r7Oju4SCRZUY7R0OKovZA+uPMCZh6lPuuOyPGpevrNfSK5QnkmLUDBDOrRjqLg1U3k4iXGTEo19agrQyvuX3GzLrlzbDyVV6cg/OOK+vXGGe6/HpfMZMnVeVXJ1ADgM2ymYC4rto+rydlTSIn0aZmZ9oy4/d51WDvx9/bgrpDnfB7PThZUzBRe+g50NaN5s74wpBFOX4pimUKfvntE+Le63LBMpOIoRrLjHDZaefomp1Nanbg6CH5rls7E6Gdo2VFASlltIpcqytxzDbWdIL/RNZDW5IKtADwZTRGwA4Xk1bqTCsHfSXHpMqlbM9eolYBXQ6VX08XM4thsvgkpxDuoubOHlWxj69Yq1f4y4tyMhqbki7aR8kJuUQ/nWVfRZoI1o4u0bmMTommGCfjiQT9iNxkxgnxllcnCjtaobQwEvDd1RNW52hvOJzw2kJJXHdGdHNU0rXfKqzM2IjZepXOQ1do0c20Kdq59Zg0GreZoT2JyXQq0+KWZSZdzqoeGhe30ZXhfkd9xWxMZXCHFeZkqQGgIu1a1zUb8ZYZNzOZUpFpywwQcTVpawwZ3YVfqylPGbch24aWbC66bZnJy/YjP3rIOtDWjd5Q2NR1Z3dqfiagbJUBWJmxlR9NPRJDCwNxzcSy0vDdiHTElhSWmS+iykw6XWjN0Ftm+v3fZQSzRU02ZSbL540LCBYxMzJYPLSYWWZkUbpGRNs+/Pbdr7DjYHtcl+dOQ8yM28G/Rpy2zPh9Xvz6ipMwYXQJLp8wEt86eWTc57effzSmHj3U5H9wRs50SHa4CkjwPGnjZrpDia0ygHzPvoCCVd4qcqxaA4Ty4hx8fOc5mH3e0br305kjorlaY4e5MqMoimqZsUOZ0SLbyUxg1jBZFnGvO7MKJ44sxoUnDI9TBjoldTOZWWZk2dCEcvKPtXtw4/Or41KJjY0RZVNmtDiVJTh+VAn+70eT8cC3TzQtFZFszZDVMpsIGRQEbUaTcH8lQtpx1cgly3PfV+S3fRHD4/HEbbDpTJJB0QJwTR3dUBRFfQgURcGauia1UVlzZw+yfJ60O9Emlln7Ws4JXTUkH6cfOQQHWruxaV+r+r4sptG7LjxOfW3MahOxHTIsvlrMLDOynNBGatxGIvU6hiK9m0kbXJnpbKZ0uPWcavxu6daEn1Ha0EpMumo7ic4yY6LM3DA1ebVtN6FglbcKKzMOkM7mIB7QnpCC9u6QGsD3hw+24b7XPke234sZ0UC/kyoH2XLajyy6SlTWfv93GcHr9eAvPzgNX9S34IJHPoi9L6G8RmVG7fIrQSyKFrO6N7IoM8map0YCgPXKzNjS/pUosBsn68ykQ162H5OPGILlW+I7bkskZkpKXO5ADegtM39ftSvhNd9M0Y5FFmR57vuKXKvrAME4JdJZIHKzfKqbojFaRyYcVvC79yMnqe7eMF5asxtApB+ULWjkk31CGzsRyyivWUsI2Swz5nFIDgtiwqXjRybMDgMi9Ty0MTNZPg+OGV7klGhpI5vFwyx4Vsbn6ViT+1qapPu7U2gtM0//e1vCa2S1dgPOx3VlElZmMoDebZPeZPZ4PKp1pikaN7NudzMOtAXh93pQHU3Fzs3y4bIJiVsSpC2v5rVE1nBLyLj4mokkW8yMqWVGkkWtOC8Lv72qVo0j0yKsXQDwv5fU4A/XnGJ7w1E7kckyA8hvldPyf9dPwuIfn6XL3LwgjX53mURrmRk/qiThNTIrCQMpAJjdTBlAaz3oywQZlJuNfS1BNHVGLDOrdjQCAKYePRS/+NYJWLRmN04bOwTDi+2PEZB9QhvFk3idiEOGlGctZj1FZZsD+dl+VbEXrNgac5FcdeooaRQwM2Tb0EzjpeSaogAirRiOKtMHLWdJk3EXWYM37WvFqWOGAIjU9xFrNiD3GqU9aMt479OBuPjy05eJbMxo2hwNeD12eBGGFATwgzPHokZTpry/aPcu2TYyI/EuPPnkNeuSXuhAJ+r0SFyhVrbG6bPOrU76uayKjHajkM0yY6ZcyZrNCOjH08yV6zS1o0vg93pQd6hTXaeNDTJlXKMEWslkvvdWkGNGDDT6qRyUaDKagJgyU11mbxq2oL+WJDeRUd7/N2k0nvjeyfi2oTP5YAkCFrUcMTQfXx9Xju+dNkqXOizbmF42obLf/cfcQLdRSHbsNVOupI7v0LzO9sshZ0HAj5MqBwGIhAMAiGt9IquybYSKnGbI9YQNEPrrhyzJj1pm2nugKAq+3Bfpw3R0ppQZnfKVkV9hG8bh9Eg4gyN9coarwYGCypLMdPfuKx6PB7+9qhb3XjJOeoV2tElndNnnq0A+y0ziB0c2d5gZZk193eDUKn2biFxD6xWZh5SSVT4V8syIAYTOD9knN1PkBN/Y0Y29zV1oDfbC7/WgyoHUU/m1c/mzmQRGycaNtM81aDeyL2pmm9cT35Orl5AW3ZhK9lyZKVeSialDO56yuJkAxNX6yjcoMzK7b3S1kCSW0wryzIgBSl8WsWHRE/2+li61QFxVaX7GysxTjmiXefE1jmWeZNlMZsg4pmbKjMwZTFok2nsBmI+nzM+/VjRZAoABoNJgNcwzNJWU2XWnC4mQZ0j7BHHx5aS/yoHIUtrT3IUvo8qMMZrfTvprSXKS+GwmeQXWjmVulk+607kWfXq+fHKatQOQaVMzInNwZZZJzImM9z4RMrmZjLFwxkMLkSGVei21gjwzYgDR3xiUikE5AIC9TZ3YVB+Jl6ku63/bAjO0Ikp9igCNbCYVjWx52XJbZfQKrXxj6jc5NqbTxNVpZO5Gb+amkXnj1bpEsh3qdWUFY2NhY8yMzHFI+iB1eeW0grwrAWH6W1VRWGb2twWxYU8kQv4YmxtKmkFtPsssr1a2vIDcyowWiQ69KmbZK2YWBtmQbaMws2zIZkHSomsPIdEkLcrJ0t3ffEJuJtlj5dJBnhkxQOnLRB6Sn41snxeKAnwR7Y59THkGS7X3U/lyEuN4yvwAamXLy5K7PqXs1jlTy4xEm5oRmU+9ZuMm470XaCWTKTvM6/Xoml4arbASiRqHPovRRUFsQN6VgDD9nSBerwcjB8eq++Zm+TDKJDXVDigFABulk1lc7b2XrclkHJKf0Mw2X5myWpIh25iaV392Vo6+IpsSq20PYezBJpsiawYVOc3I2IzYvn07rr32WlRVVSE3NxdHHHEE7r77bnR3d+uu27lzJy666CLk5+ejtLQUt9xyS9w169atw5QpU5Cbm4sRI0bgnnvugaIomRK93+jcTH1cxMZpKvyOG1Gc0cA8vW8/Y7/GdtLte+U0ssehmCGjqyHLLABYsk1Ni97d7J4cibh8QiXGDMnD+ceX6d6XekPTDKhscmobd8bXmZFLVi0Dyc2UMdv3F198gXA4jN/97nc48sgjsX79elx33XVob2/Hgw8+CAAIhUK48MILMXToUCxbtgwHDx7ENddcA0VRsGDBAgBAS0sLzjvvPEybNg0rV67E5s2bMXPmTOTn5+O2227LlPi20dfNtnZ0Cf65dg8A4MzqUjtFSorsE5rSw0epI63eOueaGKaYPUdmWU5yIK8yOygvG+/91zRsO9CONzfsU9+X+nCgeS2TmwmArmyG8TAg273XQmk9TUXGlJkLLrgAF1xwgfr92LFjsWnTJjz++OOqMrN48WJs3LgRdXV1qKioAAA89NBDmDlzJu677z4UFRXhL3/5C7q6uvDMM88gEAigpqYGmzdvxsMPP4zZs2dL+fDZ0bzrkvEj8MLKOnT1hHDlxFE2SZYYShOako/XK/FJ0oh+zsona3lRIOH7MmczaZH1uTJKJfs8Fcgmp+7+xpWPcFaWdNAVzZNZUAs4uhI0Nzdj8OBY6ecVK1agpqZGVWQA4Pzzz0cwGMSqVavUa6ZMmYJAIKC7Zs+ePdi+fbtjsveVvprsi3Ky8OotZ+Kt2VMwpCDxQm4X+kDFjP4qW5FRkdWiXRtkdN2YIePG+92Jo/C900bh0vEjdO/LrMtQsMxR6kKvK5on2UKV7P7K+DwlQsZDTDo4NiO2bNmCBQsW4Prrr1ffq6+vR1mZ3mdbUlKC7Oxs1NfXm14jvhfXGAkGg2hpadF9OYmdAbVObNgy18MwYkc8klNQOvXI3p8r4Pfh3kvG4exjh+nel31cBbLK6TGYEWTeeGXODpswpgRAJCA9bkwlk1WL7M99OqStzMydOxcejyfp1yeffKL7mT179uCCCy7AZZddhh/84Ae6zxJtnoqiJN1gRfCv2cY7f/58FBcXq1+VlZXp/pn9QmdxJDZBZF7MjMj+8Mncm8eITgGXXFYtMs9XClmClCpqa5EtZmb2eUfhmkmj8ffrJ5FVEGQ/HKYi7ZiZm266CVdccUXSa8aMGaO+3rNnD6ZNm4ZJkybhySef1F1XXl6Ojz76SPdeY2Mjenp6VOtLeXl5nAWmoaEBAOIsNoI5c+Zg9uzZ6vctLS2OKjSUTuSA/MGfZsi+8OpiZuQWVYfM42o89UosKslNTWY5tYdXmYrmAUBhThZ+/o0aAMCHWw+q78u+/lOyyqcibWWmtLQUpaXWsmt2796NadOmoba2Fk8//TS8Bgf3pEmTcN9992Hv3r0YPnw4gEhQcCAQQG1trXrNnXfeie7ubmRnZ6vXVFRU6JQmLYFAQBdj4yYybwwCUgHAhKxeFGImBB6d4iWvrFQtCbLef+PwySonIHc2kxatZLIrCFTjJRORMfH37NmDqVOnorKyEg8++CD279+P+vp6nZVl+vTpOO6443D11VdjzZo1ePvtt3H77bfjuuuuQ1FRpOLtlVdeiUAggJkzZ2L9+vVYtGgR5s2bJ20mE2DccOWUUY/cmSxmyC4rqWwm7WuJRTWKJrMyo8+8k1NO4/ok83pF5XBAqXGvFpnH1AoZS81evHgxvvrqK3z11VcYOXKk7jMR8+Lz+fDqq6/ihhtuwOmnn47c3FxceeWVauo2ABQXF2PJkiW48cYbMWHCBJSUlGD27Nk6N5JsUNZ2ZZ/PlArReYksvkZkH1ctVIZV1vsvc1BtMmSuL0QqSYHcwducjCkzM2fOxMyZM1NeN2rUKLzyyitJrxk3bhzef/99myTLPJTcNgAteSnF91BSvOiceo3f05BVVisipbgeraXLrFeXbEj/3Gtey654pYLGjCCMzIutgIqLwYjsY0tFQYhAxTRORU4aigIFV5gKkeeJ0nqqi5WTeEytwMpMRqCZxQLIv6BRMuHqs5nkllWLrFYEI7LPVS2y3n9KVlktUgcAE1G6jBC6/QlhZSYDUFsgtC07ZV10BbTaGWheSy4slTlLRU7AMFclvf+k3Laa13IrCXSsXexmYpKiXyDknyDaBuQU5BXI72bS+vgll1XzWuZFjZIJX4u0Y8oKd0ahNKZyK4ipYWUmw9CIU4tpMx7J5dUHVbonhxV0Sq3kCwWV+j2UgqopxHhQipnRW7pcFCQFFGKlYsQElP1wmAqJpwRdSC24oGWZoWT14piZzCK7mBSUWaonc5mfJ0prlBZqZUSMEBdfTqhN5rBGmyG0nkk/ttrTo+wbha4Fh8TjSu3ZEsh6+0nFzOish5ILG0X2OUopoSIVrMxkAAr1JbSECVlmoFvQ3BPDCl5CFjpdsLLEolJ6tii0iNArBXLKKKBiRdJZ5iXfYfUxaPKOqRUkH2r6SPzMqSg6y4zcAlPy8WuR3YSrX4BpjCsRMQHIO6ZUA6olHU4AdILpAToKohUkX2JpQi3qXpuaTWk+yy6rvjcTnUdN5jlL6dmisKlRClalcpChNEe1sDLDxEHloVMh5GaitFDolRkXBUkTmdc0D9HsC1k3Ct14spvJdmSfovrnyUVBbIDQEksIQqcdQB8ALPuEphQAqms0KbmsWmR1iQAg9WxRSXcXyD6eWmR+9nXB9JIPKgcAM0mhtOEC+gBgSqdd2UWlFKyqhcKcBeSXU+dmkvX+E8wQAuQOrKVkPaZo7TJD4ikxMKAwQRRd1IzcaBdcydcJEtksAm0QuMyyUkol1iLrmFKyHlGr3wXQUhApyZoIVmYyAKUNF9AXzZMdSlYvXWo2oZ1X5mHVP1sSCwoaGWKUspmoKNxaZI+V09eXclEQG5B8qGlCacMFaCkzWmQfWe3+JXtvJn1Gm9yyCmR2NRiR1UKrUw4lf6LCREpIUHIzUWi5YRVCywEdqPkhabmZzL6RD2rzQCCzrJQOChRcYhRkFOjarki8c1HKZtUvp3LLmgqJpwRdvOxmyhj6hcJFQSxAycev78/lnhypoHrqlVVWSi0CQmEalhktMj9LgCGuT3ZhU8DKTAYgteBCb76lhOxj6yW6UMi8qVGtiyHr/ac0ntplStbxBOit/wIqcUhmsDKTAag07ROEKekynoQvpURnwpd48aWK7BsFBXeDh9DzpHWHSzqcAGiVZCDktU8JKzMZQNe0j0fYViidenSWGcllpRI3Rar8PrGYKdmfJ+2hS/bnSSD7bac2R5PBW20G0Grjsi8QpJF8aHUVgPlJswVKAcDaDVdWWSnVmSGTzUSpArDmteyypoKX2AxAacGlhsfktYzog+vkftTIhE1Rssxpbrmsyiyl3kxhXTaTvLJSsh5rkTlWzgqSPmK00WexuCjIAIRS9L2HLTO2o4tDkXxMKWSzUbLMUNG4KaU7U6pSngrJlwOa6GNmaE8QmZF1gxB4CWxmAhrbhOHZknxMfQQUb0obL6lEhSiyV9XVu5lcE8MWiIsvJxROZFShFH2vj5mRXFgiaA8Hsm++FBQvSlZkKiUkSLmZCNUZSgUrMxlAv4i5J8dAhFKRr4FkwpUFfTyaa2JYgnsz2QsdywwdhVsL9TWKlZkMQLXBIDVkH1pK9SaIHHpJWT0ppObr68zIKaNAITJJKcXKUcq8SoXkQ00f2RdcalAoRCbQyid7o0kqULJ6ajcyWYOVKbmZiOgyOmRfo0gFgKdA0keMNl5CCwQ1KBVNoxUITmOn0HV5lnz1peZmlH08yRR21LyW/bnnOjNMUnT1JSRfICgj++JLwc0goHLqpWSZ0bpFKGwUsotIZY5ScoVqkX2NSgUrMxnAQzQAjBqURlZ2NxORfYKUm5FKY0SB7GsVlTmqRfbbTimhIhWszGQATsnNHJTSHnUxM7JHAhKB0v3Xbr5+WYNmNMi+VJEJANa8lt3awQHATFIoBdVRRvb9QSufX/LqWVQ2Cq8uZsZFQSyg6yUk+VwFCGQzuS2ARShZOyhlXqWCuPhyQikllxqUXHjaUxm7meyBlGVGM6gULDOS6zJkJqne2uGiIBagpHilQvKhpgmlMvaUkX1sszQrGYnNjABUMwUpyCq7jER0GR2yr1FaZHeJpYJX2Aygi5khPkFkg1JqdiAr9nhlSe9mclsCa+jN4nKPqdbNROHUK72bicgkpWXt4JiZtAgGgzjppJPg8Xiwdu1a3Wc7d+7ERRddhPz8fJSWluKWW25Bd3e37pp169ZhypQpyM3NxYgRI3DPPfdIPbH1rhAXBRmA6Go4SD642RrLjOzuRpmfJy1eQhsFkSFVkd14SGw4AVBzM7knhx34nfgld9xxByoqKvDpp5/q3g+FQrjwwgsxdOhQLFu2DAcPHsQ111wDRVGwYMECAEBLSwvOO+88TJs2DStXrsTmzZsxc+ZM5Ofn47bbbnNC/LShdHqkjOwPX7Y/tpLJrizILV0MSsH1VIq8CeS3zLgtQfrIfuAaSEXzMq7MvP7661i8eDFefPFFvP7667rPFi9ejI0bN6Kurg4VFRUAgIceeggzZ87Efffdh6KiIvzlL39BV1cXnnnmGQQCAdTU1GDz5s14+OGHMXv2bClPZ9pTuOyTmRqUClIF/D71NZ0meXJDyTJH7Z5LPpxklENKQeq6g7fksqYio0awffv24brrrsOf//xn5OXlxX2+YsUK1NTUqIoMAJx//vkIBoNYtWqVes2UKVMQCAR01+zZswfbt29P+HuDwSBaWlp0X05CqZw1NfSbmWtiWEIbJ1Ocm+WiJBagsU+QCq6naEmQGSrjSenApVVgZDQMpEPGlBlFUTBz5kxcf/31mDBhQsJr6uvrUVZWpnuvpKQE2dnZqK+vN71GfC+uMTJ//nwUFxerX5WVlf39c9KCasYFNWRfKDweD56eeQoe/e54lBXluC1OUqgo3bR8/ER23yiyKwuyyyegdODSPvfU3UxpKzNz586Fx+NJ+vXJJ59gwYIFaGlpwZw5c5L+f4m0QUVRkjaUE/EHZprknDlz0NzcrH7V1dWl+2f2C85myhy0NjNg2jHDcPGJFakvdBnZ6+AIKFlmwmG3JUgPKm4cSsiuIGj3J+p7VdoxMzfddBOuuOKKpNeMGTMG9957Lz788EOdewgAJkyYgKuuugrPPvssysvL8dFHH+k+b2xsRE9Pj2p9KS8vj7PANDQ0AECcxUYQCATifq+jEPKZUoNS12RKyL7oCiil5lNTDuQPAKYxnpRSs7XPveSipiRtZaa0tBSlpaUpr3v00Udx7733qt/v2bMH559/Pl544QVMnDgRADBp0iTcd9992Lt3L4YPHw4gEhQcCARQW1urXnPnnXeiu7sb2dnZ6jUVFRUYM2ZMuuI7gu70KPuKSxgeWvvIkj2HNAqleAQOALYXKsOpb4bqoiAWOKzdTFYZNWoUampq1K+jjjoKAHDEEUdg5MiRAIDp06fjuOOOw9VXX401a9bg7bffxu23347rrrsORUVFAIArr7wSgUAAM2fOxPr167Fo0SLMmzdP2kwmgGNmnEL2zYyxH64zc/hCcTxlVxB0bibJZU2Fq8cxn8+HV199FTk5OTj99NNx+eWX45JLLsGDDz6oXlNcXIwlS5Zg165dmDBhAm644QbMnj0bs2fPdlHy5GinhOTrLWlYmbGPMJGdglKjSXJuJskHlMp4UnIzeQ9nN1NfGTNmTEKf56hRo/DKK68k/dlx48bh/fffz5RotqNbcCX3Q1OG+sMnEz84cyz+95WN+FpNuduiJEVX5EvyCUBEP1SRezTpjCelOTqQklUcU2YOJzw0wg/Iw4qifXz/9DGYWDUY1WUFbouSFA+heLSeELF0JskhossYEkDcE8MKngHUm4mVmQzAbiZn8EvevJESHo8HNSOK3RYjJZRS88slry1kRPbxpGKZ0SK7wk3JJZYKVmYyAMdyOAOP8+GH3oUrNzefU43Wrl58Y7z8dYYA+ceTim1Gn80k/6gK2DLDxKEPUqQ9QWSGSDYxYyNeQpaZ4tws/OLbJ7gtxoCBimWGUi0kLdRjZng7yAA60517Ygx4OGbm8EN7z/n+24vsBy8iugypZqgDKSSClZkMQMmvTxkq6cSMfXBwfeaQfamiUgFYi+zrv7awI5WWJmbw0pABZNfGBwrUKqwy/YefrMwxtNDFFjAWoPK4U2q5oj0QUo+ZYWUmA+hMd7z8ZgwqRbQY+6BUNI8K151ZBb/Xg8smVLotSlKoGGYodc3WWrtkV7xSwQHAGYAXXGegsrgx9kEpm4kKd114HG499ygUBOTeDrp76dXtkd3aMZCWULbMZABdiWgX5RjohNnPdNgxkOpiyITsigwgv2IgoJQAMpDiDlmZyTCyF02izMB5DBmrsP5y+PLUNRNQXpSDJ6+udVuUpOgy7iSfsANIl2FlJlNcNXEUxo0oxtSjh7otSkp+euGxAICHLz/RZUmsEfBHpu2Z1aUuS8I4DQfXH75MHDsEH955DqYfL3f/MH07A7nn60AybstvWyTKfd8c57YIlvnBmWNxxamjSJiaAWDZf5+NLfvbMLFqsNuiMA4j99bAMHpkN8xTTHc3g8buxWQcKooMEEkhlT2NlMkMHFzPyA6lOmMDR5VhNxPDMISQfXNgGH1VXbkn7JHDCtwWwTboHMcZhjns0RUkY6cTIzmyx8x8++SRqG/uwvhRg9wWpd+wMsMwDEkk3yeYwxStwi17zIzX68Et51S7LYYtsJuJYRiSSL5PMIcpA6l5IyVYmWEYhmEYm6BS3G+gwcoMwzAMw9iEtvt0iF4HBrKwMsMwDEnYhM/IiNYyM5DaBcgOKzMMwzAMYxO6dGzWZRyDlRmGYUgiew0PhgmxZcYxWJlhGIYkrMowssNuJudgZYZhGIZhMsBAauQoO6zMMAxDEzbNMJIzkBo5yg4rMwzDkITbGTCyE2bTjGOwMsMwDMMwGaBq6MBp5Cg73JuJYRiScKFVRlZeumEyvtjbirOqS90W5bCBlRmGYUji97FhmZGTk0eV4ORRJW6LcVjBqwHDMCTh4EqGYQSszDAMQ5Jjhxe5LQLDMJLAbiaGYUjxxqwz8WldE75WU+62KAzDSAIrMwzDkOKY8iIcU85WGYZhYrCbiWEYhmEY0rAywzAMwzAMaViZYRiGYRiGNBlXZl599VVMnDgRubm5KC0txaWXXqr7fOfOnbjooouQn5+P0tJS3HLLLeju7tZds27dOkyZMgW5ubkYMWIE7rnnHk7LZBiGYRgGQIYDgF988UVcd911mDdvHs4++2woioJ169apn4dCIVx44YUYOnQoli1bhoMHD+Kaa66BoihYsGABAKClpQXnnXcepk2bhpUrV2Lz5s2YOXMm8vPzcdttt2VSfIZhGIZhCOBRMmTi6O3txZgxY/Dzn/8c1157bcJrXn/9dcyYMQN1dXWoqKgAACxcuBAzZ85EQ0MDioqK8Pjjj2POnDnYt28fAoEAAOD+++/HggULsGvXLng8qWuat7S0oLi4GM3NzSgq4iwIhmEYhqGA1f07Y26m1atXY/fu3fB6vRg/fjyGDx+Or33ta9iwYYN6zYoVK1BTU6MqMgBw/vnnIxgMYtWqVeo1U6ZMURUZcc2ePXuwffv2hL87GAyipaVF98UwDMMwzMAkY8rM1q1bAQBz587FT3/6U7zyyisoKSnBlClTcOjQIQBAfX09ysrKdD9XUlKC7Oxs1NfXm14jvhfXGJk/fz6Ki4vVr8rKSlv/NoZhGIZh5CFtZWbu3LnweDxJvz755BOEw2EAwF133YVvfetbqK2txdNPPw2Px4O///3v6v+XyE2kKIrufeM1wjNm5mKaM2cOmpub1a+6urp0/0yGYRiGYYiQdgDwTTfdhCuuuCLpNWPGjEFraysA4LjjjlPfDwQCGDt2LHbu3AkAKC8vx0cffaT72cbGRvT09KjWl/Ly8jgLTENDAwDEWWy0v0frlmIYhmEYZuCStjJTWlqK0tLSlNfV1tYiEAhg06ZNOOOMMwAAPT092L59O0aPHg0AmDRpEu677z7s3bsXw4cPBwAsXrwYgUAAtbW16jV33nknuru7kZ2drV5TUVGBMWPGpCs+wzAMwzADjIzFzBQVFeH666/H3XffjcWLF2PTpk340Y9+BAC47LLLAADTp0/Hcccdh6uvvhpr1qzB22+/jdtvvx3XXXedGrV85ZVXIhAIYObMmVi/fj0WLVqEefPmYfbs2ZYymRiGYRiGGdhktM7ML3/5S/j9flx99dXo7OzExIkT8c4776CkpAQA4PP58Oqrr+KGG27A6aefjtzcXFx55ZV48MEH1f+juLgYS5YswY033ogJEyagpKQEs2fPxuzZszMpOsMwDMMwRMhYnRmZaG5uxqBBg1BXV8d1ZhiGYRiGCC0tLaisrERTUxOKi4tNr8uoZUYWRDAyp2gzDMMwDD1aW1uTKjOHhWUmHA5jz549KCwstD3ORmiNbPXJDDy+mYXHN7Pw+GYWHt/MIsP4KoqC1tZWVFRUwOs1D/M9LCwzXq8XI0eOzOjvKCoq4ocpg/D4ZhYe38zC45tZeHwzi9vjm8wiI8h412yGYRiGYZhMwsoMwzAMwzCkYWWmnwQCAdx9991ccThD8PhmFh7fzMLjm1l4fDMLpfE9LAKAGYZhGIYZuLBlhmEYhmEY0rAywzAMwzAMaViZYRiGYRiGNKzMMAzDMAxDGlZm+sFvf/tbVFVVIScnB7W1tfjggw/cFkk63n//fVx00UWoqKiAx+PBP/7xD93niqJg7ty5qKioQG5uLqZOnYoNGzborgkGg7j55ptRWlqK/Px8XHzxxdi1a5fumsbGRlx99dUoLi5GcXExrr76ajQ1NWX4r3Of+fPn45RTTkFhYSGGDRuGSy65BJs2bdJdw2Pcdx5//HGccMIJatGwSZMm4fXXX1c/57G1l/nz58Pj8WDWrFnqezzGfWfu3LnweDy6r/LycvXzATW2CtMnFi5cqGRlZSm///3vlY0bNyq33nqrkp+fr+zYscNt0aTitddeU+666y7lxRdfVAAoixYt0n1+//33K4WFhcqLL76orFu3TvnOd76jDB8+XGlpaVGvuf7665URI0YoS5YsUVavXq1MmzZNOfHEE5Xe3l71mgsuuECpqalRli9frixfvlypqalRZsyY4dSf6Rrnn3++8vTTTyvr169X1q5dq1x44YXKqFGjlLa2NvUaHuO+8/LLLyuvvvqqsmnTJmXTpk3KnXfeqWRlZSnr169XFIXH1k4+/vhjZcyYMcoJJ5yg3Hrrrer7PMZ95+6771aOP/54Ze/evepXQ0OD+vlAGltWZvrIqaeeqlx//fW694455hjlJz/5iUsSyY9RmQmHw0p5ebly//33q+91dXUpxcXFyhNPPKEoiqI0NTUpWVlZysKFC9Vrdu/erXi9XuWNN95QFEVRNm7cqABQPvzwQ/WaFStWKACUL774IsN/lVw0NDQoAJSlS5cqisJjnAlKSkqUP/zhDzy2NtLa2qpUV1crS5YsUaZMmaIqMzzG/ePuu+9WTjzxxISfDbSxZTdTH+ju7saqVaswffp03fvTp0/H8uXLXZKKHtu2bUN9fb1uHAOBAKZMmaKO46pVq9DT06O7pqKiAjU1Neo1K1asQHFxMSZOnKhec9ppp6G4uPiwux/Nzc0AgMGDBwPgMbaTUCiEhQsXor29HZMmTeKxtZEbb7wRF154Ic4991zd+zzG/efLL79ERUUFqqqqcMUVV2Dr1q0ABt7YHhaNJu3mwIEDCIVCKCsr071fVlaG+vp6l6SihxirROO4Y8cO9Zrs7GyUlJTEXSN+vr6+HsOGDYv7/4cNG3ZY3Q9FUTB79mycccYZqKmpAcBjbAfr1q3DpEmT0NXVhYKCAixatAjHHXeculDz2PaPhQsXYvXq1Vi5cmXcZzx/+8fEiRPxpz/9CUcddRT27duHe++9F5MnT8aGDRsG3NiyMtMPPB6P7ntFUeLeY1LTl3E0XpPo+sPtftx000347LPPsGzZsrjPeIz7ztFHH421a9eiqakJL774Iq655hosXbpU/ZzHtu/U1dXh1ltvxeLFi5GTk2N6HY9x3/ja176mvh43bhwmTZqEI444As8++yxOO+00AANnbNnN1AdKS0vh8/nitM6GhoY4LZcxR0TVJxvH8vJydHd3o7GxMek1+/bti/v/9+/ff9jcj5tvvhkvv/wy3n33XYwcOVJ9n8e4/2RnZ+PII4/EhAkTMH/+fJx44on49a9/zWNrA6tWrUJDQwNqa2vh9/vh9/uxdOlSPProo/D7/erfz2NsD/n5+Rg3bhy+/PLLATd/WZnpA9nZ2aitrcWSJUt07y9ZsgSTJ092SSp6VFVVoby8XDeO3d3dWLp0qTqOtbW1yMrK0l2zd+9erF+/Xr1m0qRJaG5uxscff6xe89FHH6G5uXnA3w9FUXDTTTfhpZdewjvvvIOqqird5zzG9qMoCoLBII+tDZxzzjlYt24d1q5dq35NmDABV111FdauXYuxY8fyGNtIMBjE559/juHDhw+8+etYqPEAQ6RmP/XUU8rGjRuVWbNmKfn5+cr27dvdFk0qWltblTVr1ihr1qxRACgPP/ywsmbNGjWF/f7771eKi4uVl156SVm3bp3y3e9+N2Fq4MiRI5W33npLWb16tXL22WcnTA084YQTlBUrVigrVqxQxo0bN+DTLhVFUX70ox8pxcXFynvvvadLv+zo6FCv4THuO3PmzFHef/99Zdu2bcpnn32m3HnnnYrX61UWL16sKAqPbSbQZjMpCo9xf7jtttuU9957T9m6davy4YcfKjNmzFAKCwvVfWogjS0rM/3gN7/5jTJ69GglOztbOfnkk9V0WCbGu+++qwCI+7rmmmsURYmkB959991KeXm5EggElLPOOktZt26d7v/o7OxUbrrpJmXw4MFKbm6uMmPGDGXnzp26aw4ePKhcddVVSmFhoVJYWKhcddVVSmNjo0N/pXskGlsAytNPP61ew2Pcd77//e+rz/jQoUOVc845R1VkFIXHNhMYlRke474j6sZkZWUpFRUVyqWXXqps2LBB/Xwgja1HURTFOTsQwzAMwzCMvXDMDMMwDMMwpGFlhmEYhmEY0rAywzAMwzAMaViZYRiGYRiGNKzMMAzDMAxDGlZmGIZhGIYhDSszDMMwDMOQhpUZhmEYhmFIw8oMwzAMwzCkYWWGYRiGYRjSsDLDMAzDMAxpWJlhGIZhGIY0/x9L8p8n5bnh3wAAAABJRU5ErkJggg==",
+ "text/plain": [
+ "