testapp / app.py
bkhalaf's picture
Create app.py
1ecf838
raw
history blame
2.07 kB
import streamlit as st
import pandas as pd
import numpy as np
from transformers import pipeline, AutoModelWithLMHead, AutoTokenizer
import torch
import boto3
s3 = boto3.resource('s3')
s3_object = s3.Bucket('nlp-gpt-models').Object('mod_v1.pth').get()
st.title('Patent Context Generation Tool-Development Stage..')
model_path = s3_object
#model_path = 'https://nlp-gpt-models.s3.amazonaws.com/mod_v1.pth'
#model_path = 'https://drive.google.com/file/d/1-Dqk6fZzDiFKTqnnQ2yqW48uJk-CPqrB/view?usp=sharing'
propmt_title = st.text_input('Enter Your Title....', 'Biology...')
f1 = st.button('Generate')
if f1:
try:
saved_model = torch.load(model_path)
tokenizer = AutoTokenizer.from_pretrained("gpt2")
generator = pipeline('text-generation', model = saved_model , tokenizer = tokenizer)
def paraphrase(propmt_title):
p = generator('<s>' + propmt_title + '</s>>>>><p>')
return p[0]['generated_text'].split('</s>>>>>><p>')[0].split('</p>')[0].split('<p>')[1]
output= paraphrase(propmt_title)
st.text_area('paraphrased_titless', output ,False)
except Exception as e:
st.exception("Exception: %s\n" % e)
st.text_area('paraphrased_titless', st.exception("Exception: %s\n" % e) ,False)
propmt_title = st.text_input('Enter Your Paraphrased Title....', 'title context...')
f2 = st.form("my_form2")
f2.form_submit_button("Submit")
st.text_area('Generated Fields', '',False)
propmt_title = st.text_input('Enter Your Generated Field ....', 'Field context...')
f3 = st.form("my_form3")
f3.form_submit_button("Submit")
st.text_area('Generated Abstract', '',False)
propmt_title = st.text_input('Enter Your Generated Abstract ....', 'Abstract context...')
f4 = st.form("my_form4")
f4.form_submit_button("Submit")
st.text_area('Generated Background', '',False)
st.download_button(label="Download Full Patent (PDF file)",
data=propmt_title,
file_name="test.pdf",
mime='application/octet-stream')