import streamlit as st import pandas as pd import numpy as np from transformers import pipeline, AutoModelWithLMHead, AutoTokenizer import torch import boto3 s3 = boto3.resource('s3') s3_object = s3.Bucket('nlp-gpt-models').Object('mod_v1.pth').get() st.title('Patent Context Generation Tool-Development Stage..') model_path = s3_object #model_path = 'https://nlp-gpt-models.s3.amazonaws.com/mod_v1.pth' #model_path = 'https://drive.google.com/file/d/1-Dqk6fZzDiFKTqnnQ2yqW48uJk-CPqrB/view?usp=sharing' propmt_title = st.text_input('Enter Your Title....', 'Biology...') f1 = st.button('Generate') if f1: try: saved_model = torch.load(model_path) tokenizer = AutoTokenizer.from_pretrained("gpt2") generator = pipeline('text-generation', model = saved_model , tokenizer = tokenizer) def paraphrase(propmt_title): p = generator('' + propmt_title + '>>>>

') return p[0]['generated_text'].split('>>>>>

')[0].split('

')[0].split('

')[1] output= paraphrase(propmt_title) st.text_area('paraphrased_titless', output ,False) except Exception as e: st.exception("Exception: %s\n" % e) st.text_area('paraphrased_titless', st.exception("Exception: %s\n" % e) ,False) propmt_title = st.text_input('Enter Your Paraphrased Title....', 'title context...') f2 = st.form("my_form2") f2.form_submit_button("Submit") st.text_area('Generated Fields', '',False) propmt_title = st.text_input('Enter Your Generated Field ....', 'Field context...') f3 = st.form("my_form3") f3.form_submit_button("Submit") st.text_area('Generated Abstract', '',False) propmt_title = st.text_input('Enter Your Generated Abstract ....', 'Abstract context...') f4 = st.form("my_form4") f4.form_submit_button("Submit") st.text_area('Generated Background', '',False) st.download_button(label="Download Full Patent (PDF file)", data=propmt_title, file_name="test.pdf", mime='application/octet-stream')