bklg commited on
Commit
a153c95
·
1 Parent(s): 23e613f

Upload 114 files

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +1 -0
  2. app.py +419 -0
  3. examples/000000027620.jpg +0 -0
  4. examples/000000112634.jpg +0 -0
  5. examples/000000165713.jpg +0 -0
  6. examples/000000190756.jpg +0 -0
  7. examples/000000226058.jpg +0 -0
  8. examples/000000234779.jpg +0 -0
  9. examples/000000243075.jpg +0 -0
  10. examples/000000263860.jpg +0 -0
  11. examples/000000284762.jpg +0 -0
  12. examples/000000298738.jpg +0 -0
  13. examples/000000372819.jpg +0 -0
  14. examples/000000377814.jpg +0 -0
  15. examples/000000516143.jpg +0 -0
  16. examples/000000555050.jpg +0 -0
  17. examples/dogs.jpg +0 -0
  18. examples/flowers.jpg +0 -0
  19. examples/fruits.jpg +0 -0
  20. examples/image.jpg +0 -0
  21. examples/truck.jpg +0 -0
  22. regionspot/__init__.py +10 -0
  23. regionspot/__pycache__/__init__.cpython-38.pyc +0 -0
  24. regionspot/__pycache__/automatic_mask_generator.cpython-38.pyc +0 -0
  25. regionspot/__pycache__/build.cpython-38.pyc +0 -0
  26. regionspot/__pycache__/config.cpython-38.pyc +0 -0
  27. regionspot/__pycache__/detector.cpython-38.pyc +0 -0
  28. regionspot/__pycache__/predictor.cpython-38.pyc +0 -0
  29. regionspot/__pycache__/test_time_augmentation.cpython-38.pyc +0 -0
  30. regionspot/automatic_mask_generator.py +632 -0
  31. regionspot/build.py +307 -0
  32. regionspot/config.py +39 -0
  33. regionspot/data/__pycache__/custom_dataset_dataloader.cpython-38.pyc +0 -0
  34. regionspot/data/__pycache__/dataset_mapper.cpython-38.pyc +0 -0
  35. regionspot/data/__pycache__/v3det_categories.cpython-38.pyc +3 -0
  36. regionspot/data/custom_dataset_dataloader.py +331 -0
  37. regionspot/data/dataset_mapper.py +140 -0
  38. regionspot/data/objects365.py +391 -0
  39. regionspot/data/openimages.py +34 -0
  40. regionspot/data/openimages_categories.py +1 -0
  41. regionspot/data/v3det.py +34 -0
  42. regionspot/data/v3det_categories.py +0 -0
  43. regionspot/detector.py +174 -0
  44. regionspot/modeling/__pycache__/constants.cpython-38.pyc +0 -0
  45. regionspot/modeling/__pycache__/decoder.cpython-38.pyc +0 -0
  46. regionspot/modeling/__pycache__/regionspot.cpython-38.pyc +0 -0
  47. regionspot/modeling/clip/__init__.py +1 -0
  48. regionspot/modeling/clip/__pycache__/__init__.cpython-38.pyc +0 -0
  49. regionspot/modeling/clip/__pycache__/clip.cpython-38.pyc +0 -0
  50. regionspot/modeling/clip/__pycache__/model.cpython-38.pyc +0 -0
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ regionspot/data/__pycache__/v3det_categories.cpython-38.pyc filter=lfs diff=lfs merge=lfs -text
app.py ADDED
@@ -0,0 +1,419 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import torch
3
+ from PIL import ImageDraw
4
+ from PIL import Image
5
+ import numpy as np
6
+ from torchvision.transforms import ToPILImage
7
+
8
+ import matplotlib.pyplot as plt
9
+ import cv2
10
+ from regionspot.modeling.regionspot import build_regionspot_model
11
+ from regionspot import RegionSpot_Predictor
12
+ from regionspot import SamAutomaticMaskGenerator
13
+ import ast
14
+
15
+ fdic = {
16
+ # "family": "Impact",
17
+ # "style": "italic",
18
+ "size": 15,
19
+ # "color": "yellow",
20
+ # "weight": "bold",
21
+ }
22
+
23
+ def show_mask(mask, ax, random_color=False):
24
+ if random_color:
25
+ color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
26
+ else:
27
+ color = np.array([30/255, 144/255, 255/255, 0.6])
28
+ h, w = mask.shape[-2:]
29
+ mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
30
+ ax.imshow(mask_image)
31
+
32
+ # Function to show points on an image
33
+ def show_points(coords, labels, ax, marker_size=375):
34
+ pos_points = coords[labels == 1]
35
+ neg_points = coords[labels == 0]
36
+ ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
37
+ ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
38
+
39
+ # Function to show bounding boxes on an image
40
+ def show_box(box, ax):
41
+ x0, y0 = box[0], box[1]
42
+ w, h = box[2] - x0, box[3] - y0
43
+ ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor='none', lw=2))
44
+
45
+ def auto_show_box(box, label, ax):
46
+ x0, y0 = box[0], box[1]
47
+ w, h =box[2], box[3]
48
+ ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2))
49
+ ax.text(x0,y0,f"{label}", fontdict=fdic)
50
+
51
+ def show_anns(image, anns, custom_vocabulary):
52
+ if anns == False:
53
+ plt.imshow(image)
54
+ ax = plt.gca()
55
+ ax.set_autoscale_on(False)
56
+ ax.imshow(image)
57
+ pic = plt.gcf()
58
+ pic.canvas.draw()
59
+ w,h = pic.canvas.get_width_height()
60
+ image = Image.frombytes('RGB', (w,h), pic.canvas.tostring_rgb())
61
+ return image
62
+
63
+ plt.imshow(image)
64
+ if len(anns) == 0:
65
+ return
66
+ sorted_anns = sorted(anns, key=(lambda x: x['area']), reverse=True)
67
+ ax = plt.gca()
68
+ ax.set_autoscale_on(False)
69
+
70
+ img = np.ones((sorted_anns[0]['segmentation'].shape[0], sorted_anns[0]['segmentation'].shape[1], 4))
71
+ img[:,:,3] = 0
72
+ for ann in sorted_anns:
73
+ l = custom_vocabulary[int(ann['pred_class'])]
74
+ if l != 'background':
75
+ m = ann['segmentation']
76
+ color_mask = np.concatenate([np.random.random(3), [0.35]])
77
+ img[m] = color_mask
78
+ b = ann['bbox']
79
+ auto_show_box(b,l, ax)
80
+ ax.imshow(img)
81
+ ax.axis('off')
82
+ pic = plt.gcf()
83
+ pic.canvas.draw()
84
+ w,h = pic.canvas.get_width_height()
85
+ image = Image.frombytes('RGB', (w,h), pic.canvas.tostring_rgb())
86
+ return image
87
+
88
+ def process_box(image, input_box, masks, mask_iou_score, class_score, class_index, custom_vocabulary):
89
+ # Extract class name and display image with masks and box
90
+ fig, ax = plt.subplots(figsize=(10, 10))
91
+ ax.imshow(image)
92
+ for idx in range(len(input_box)):
93
+ show_mask(masks[idx], ax)
94
+ show_box(input_box[idx], ax) # Assuming box_prompt contains all your boxes
95
+ # You might want to modify the text display for multiple classes as well
96
+ class_name = custom_vocabulary[int(class_index[idx])]
97
+ ax.text(input_box[idx][0], input_box[idx][1] - 10, class_name, color='white', fontsize=14, bbox=dict(facecolor='green', edgecolor='green', alpha=0.6))
98
+
99
+ ax.axis('off')
100
+ pic = plt.gcf()
101
+ pic.canvas.draw()
102
+ w,h = pic.canvas.get_width_height()
103
+ image = Image.frombytes('RGB', (w,h), pic.canvas.tostring_rgb())
104
+ return image
105
+
106
+ device = torch.device(
107
+ "cuda"
108
+ if torch.cuda.is_available()
109
+ else "mps"
110
+ if torch.backends.mps.is_available()
111
+ else "cpu"
112
+ )
113
+
114
+ # Description
115
+ title = "<center><strong><font size='8'> RegionSpot: Recognize Any Regions </font></strong></center>"
116
+
117
+ description_e = """ This is a demo on Github project [Recognize Any Regions](https://github.com/Surrey-UPLab/Recognize-Any-Regions). Welcome to give a star to it.
118
+
119
+ """
120
+
121
+ description_p = """ This is a demo on Github project [Recognize Any Regions](https://github.com/Surrey-UPLab/Recognize-Any-Regions). Welcome to give a star to it.
122
+
123
+ """
124
+ description_b = """ This is a demo on Github project [Recognize Any Regions](https://github.com/Surrey-UPLab/Recognize-Any-Regions). Welcome to give a star to it.
125
+
126
+ """
127
+
128
+ examples = [["examples/dogs.jpg"], ["examples/fruits.jpg"], ["examples/flowers.jpg"],
129
+ ["examples/000000190756.jpg"], ["examples/image.jpg"], ["examples/000000263860.jpg"],
130
+ ["examples/000000298738.jpg"], ["examples/000000027620.jpg"], ["examples/000000112634.jpg"],
131
+ ["examples/000000377814.jpg"], ["examples/000000516143.jpg"]]
132
+
133
+ default_example = examples[0]
134
+
135
+ css = "h1 { text-align: center } .about { text-align: justify; padding-left: 10%; padding-right: 10%; }"
136
+
137
+ def segment_sementic(image, text):
138
+ mask_threshold = 0.0
139
+ img = image
140
+ coor = np.nonzero(img["mask"])
141
+ coor[0].sort()
142
+ xmin = coor[0][0]
143
+ xmax = coor[0][-1]
144
+ coor[1].sort()
145
+ ymin = coor[1][0]
146
+ ymax = coor[1][-1]
147
+ input_box = np.array([[ymin, xmin, ymax, xmax]])
148
+
149
+ image = img["image"]
150
+ input_image = np.asarray(image)
151
+
152
+ ckpt_path = 'regionspot_bl_336.pth'
153
+ clip_type = 'CLIP_400M_Large_336'
154
+ # clip_input_size = 336
155
+ clip_input_size = 224
156
+ text = text.split(',')
157
+ custom_vocabulary = text
158
+ # Build and initialize the model
159
+ model, msg = build_regionspot_model(is_training=False, image_size=clip_input_size, clip_type=clip_type, pretrain_ckpt=ckpt_path,
160
+ custom_vocabulary=custom_vocabulary)
161
+ # Create predictor and set image
162
+ predictor = RegionSpot_Predictor(model.cuda())
163
+ predictor.set_image(input_image, clip_input_size=clip_input_size)
164
+
165
+ masks, mask_iou_score, class_score, class_index = predictor.predict(
166
+ point_coords=None,
167
+ point_labels=None,
168
+ box=input_box,
169
+ multimask_output=False,
170
+ mask_threshold = mask_threshold,
171
+ )
172
+ fig = process_box(input_image, input_box,masks, mask_iou_score, class_score, class_index, custom_vocabulary)
173
+
174
+ torch.cuda.empty_cache()
175
+ torch.cuda.empty_cache()
176
+ torch.cuda.empty_cache()
177
+ torch.cuda.empty_cache()
178
+
179
+ return fig
180
+
181
+ def text_segment_sementic(image, text, conf_threshold, box_threshold, crop_n_layers, crop_nms_threshold):
182
+ mask_threshold = 0.0
183
+ image = image
184
+ input_image = np.asarray(image)
185
+ text = text.split(',')
186
+
187
+ textP = ['background']
188
+ text = textP + text
189
+
190
+ custom_vocabulary = text
191
+ ckpt_path = 'regionspot_bl_336.pth'
192
+ clip_type = 'CLIP_400M_Large_336'
193
+ clip_input_size = 336
194
+ # clip_input_size = 224
195
+ model, msg = build_regionspot_model(is_training=False, image_size=clip_input_size, clip_type=clip_type, pretrain_ckpt=ckpt_path,
196
+ custom_vocabulary=custom_vocabulary)
197
+ mask_generator = SamAutomaticMaskGenerator(model.cuda(),
198
+ # crop_thresh=iou_threshold,
199
+ box_thresh=conf_threshold,mask_threshold=mask_threshold,
200
+ box_nms_thresh=box_threshold, crop_n_layers=crop_n_layers, crop_nms_thresh= crop_nms_threshold)
201
+ masks = mask_generator.generate(input_image)
202
+
203
+ fig = show_anns(input_image, masks, custom_vocabulary)
204
+
205
+ torch.cuda.empty_cache()
206
+ torch.cuda.empty_cache()
207
+ torch.cuda.empty_cache()
208
+ torch.cuda.empty_cache()
209
+
210
+ return fig
211
+
212
+ def point_segment_sementic(image, text, box_threshold, crop_nms_threshold):
213
+ global global_points
214
+ global global_point_label
215
+ global image_temp
216
+
217
+ mask_threshold = 0.0
218
+ input_image = image_temp
219
+ output_image = np.asarray(image)
220
+ ckpt_path = 'regionspot_bl_336.pth'
221
+ clip_type = 'CLIP_400M_Large_336'
222
+ clip_input_size = 336
223
+ # clip_input_size = 224
224
+ text = text.split(',')
225
+
226
+ textP = ['background']
227
+ text = textP + text
228
+
229
+ custom_vocabulary = text
230
+ model, msg = build_regionspot_model(is_training=False, image_size=clip_input_size, clip_type=clip_type, pretrain_ckpt=ckpt_path,
231
+ custom_vocabulary=custom_vocabulary)
232
+ mask_generator = SamAutomaticMaskGenerator(model.cuda(),
233
+ crop_thresh=0.0,
234
+ box_thresh=0.0,
235
+ mask_threshold=mask_threshold,
236
+ box_nms_thresh=box_threshold, crop_nms_thresh= crop_nms_threshold)
237
+ masks = mask_generator.generate_point(input_image,point=np.asarray(global_points), label=np.asarray(global_point_label))
238
+
239
+ fig = show_anns(output_image, masks, custom_vocabulary)
240
+
241
+ torch.cuda.empty_cache()
242
+ torch.cuda.empty_cache()
243
+ torch.cuda.empty_cache()
244
+ torch.cuda.empty_cache()
245
+
246
+ return fig
247
+
248
+ def get_points_with_draw(image, label, evt: gr.SelectData):
249
+ global global_points
250
+ global global_point_label
251
+ global image_temp
252
+
253
+ if global_point_label == []:
254
+ image_temp = np.asarray(image)
255
+
256
+ x, y = evt.index[0], evt.index[1]
257
+ point_radius, point_color = 15, (255, 255, 0) if label == 'Mask' else (255, 0, 255)
258
+ global_points.append([x, y])
259
+ global_point_label.append(1 if label == 'Mask' else 0)
260
+
261
+ draw = ImageDraw.Draw(image)
262
+ draw.ellipse([(x - point_radius, y - point_radius), (x + point_radius, y + point_radius)], fill=point_color)
263
+ return image
264
+
265
+
266
+ cond_img_p = gr.Image(label="Input with points", value="examples/dogs.jpg", type='pil')
267
+ cond_img_t = gr.Image(label="Input with text", value="examples/dogs.jpg", type='pil')
268
+ cond_img_b = gr.Image(label="Input with box", type="pil",tool='sketch')
269
+ img_p = gr.Image(label="Input with points P", type='pil')
270
+
271
+ segm_img_p = gr.Image(label="Segmented Image with points", interactive=False, type='pil')
272
+ segm_img_t = gr.Image(label="Segmented Image with text", interactive=False, type='pil')
273
+ segm_img_b = gr.Image(label="Segmented Image with box", interactive=False, type='pil')
274
+
275
+ global_points = []
276
+ global_point_label = []
277
+ image_temp = np.array([])
278
+
279
+ with gr.Blocks(css=css, title='Region Spot') as demo:
280
+ with gr.Row():
281
+ with gr.Column(scale=1):
282
+ # Title
283
+ gr.Markdown(title)
284
+
285
+ with gr.Tab("Points mode"):
286
+ # Images
287
+ with gr.Row(variant="panel"):
288
+ with gr.Column(scale=1):
289
+ cond_img_p.render()
290
+
291
+ with gr.Column(scale=1):
292
+ segm_img_p.render()
293
+
294
+ # Submit & Clear
295
+ with gr.Row():
296
+ with gr.Column():
297
+ with gr.Row():
298
+ with gr.Column():
299
+ add_or_remove = gr.Radio(["Mask", "Background"], value="Mask", label="Point_label (foreground/background)")
300
+ text_box_p = gr.Textbox(label="vocabulary", value="dog,cat")
301
+ with gr.Column():
302
+ segment_btn_p = gr.Button("Segment with points prompt", variant='primary')
303
+ clear_btn_p = gr.Button("Clear", variant='secondary')
304
+
305
+ gr.Markdown("Try some of the examples below")
306
+ gr.Examples(examples=examples,
307
+ inputs=[cond_img_t],
308
+ examples_per_page=18)
309
+
310
+ with gr.Column():
311
+ with gr.Accordion("Advanced options", open=True):
312
+ box_threshold_p = gr.Slider(0.0, 0.9, 0.7, step=0.05, label='box threshold', info='box nms threshold')
313
+ crop_threshold_p = gr.Slider(0.0, 0.9, 0.7, step=0.05, label='crop threshold', info='crop nms threshold')
314
+ # Description
315
+ gr.Markdown(description_p)
316
+ cond_img_p.select(get_points_with_draw, [cond_img_p, add_or_remove], cond_img_p)
317
+ segment_btn_p.click(point_segment_sementic,
318
+ inputs=[
319
+ cond_img_p,
320
+ text_box_p,
321
+ box_threshold_p,
322
+ crop_threshold_p,
323
+ ],
324
+ outputs=[segm_img_p])
325
+
326
+ with gr.Tab("Text mode"):
327
+ # Images
328
+ with gr.Row(variant="panel"):
329
+ with gr.Column(scale=1):
330
+ cond_img_t.render()
331
+
332
+ with gr.Column(scale=1):
333
+ segm_img_t.render()
334
+
335
+ # Submit & Clear
336
+ with gr.Row():
337
+ with gr.Column():
338
+ with gr.Row():
339
+ with gr.Column():
340
+ contour_check = gr.Checkbox(value=True, label='withContours', info='draw the edges of the masks')
341
+ text_box_t = gr.Textbox(label="text prompt", value="dog,cat")
342
+
343
+ with gr.Column():
344
+ segment_btn_t = gr.Button("Segment with text", variant='primary')
345
+ clear_btn_t = gr.Button("Clear", variant="secondary")
346
+
347
+ gr.Markdown("Try some of the examples below")
348
+ gr.Examples(examples=examples,
349
+ inputs=[cond_img_t],
350
+ examples_per_page=18)
351
+
352
+ with gr.Column():
353
+ with gr.Accordion("Advanced options", open=True):
354
+ conf_threshold_t = gr.Slider(0.0, 0.9, 0.8, step=0.05, label='clip threshold', info='object confidence threshold of clip')
355
+ box_threshold_t = gr.Slider(0.0, 0.9, 0.5, step=0.05, label='box threshold', info='box nms threshold')
356
+ crop_n_layers_t = gr.Slider(0, 3, 0, step=1, label='crop_n_layers', info='crop_n_layers of auto generator')
357
+ crop_threshold_t = gr.Slider(0.0, 0.9, 0.5, step=0.05, label='crop threshold', info='crop nms threshold')
358
+
359
+ # Description
360
+ gr.Markdown(description_e)
361
+ segment_btn_t.click(text_segment_sementic,
362
+ inputs=[
363
+ cond_img_t,
364
+ text_box_t,
365
+ conf_threshold_t,
366
+ box_threshold_t,
367
+ crop_n_layers_t,
368
+ crop_threshold_t
369
+ ],
370
+ outputs=[segm_img_t])
371
+
372
+ with gr.Tab("Box mode"):
373
+ # Images
374
+ with gr.Row(variant="panel"):
375
+ with gr.Column(scale=1):
376
+ cond_img_b.render()
377
+
378
+ with gr.Column(scale=1):
379
+ segm_img_b.render()
380
+
381
+ # Submit & Clear
382
+ with gr.Row():
383
+ with gr.Column():
384
+ with gr.Row():
385
+ with gr.Column():
386
+ contour_check = gr.Checkbox(value=True, label='withContours', info='draw the edges of the masks')
387
+ text_box_b = gr.Textbox(label="vocabulary", value="dog,cat")
388
+ with gr.Column():
389
+ segment_btn_b = gr.Button("Segment with box", variant='primary')
390
+ clear_btn_b = gr.Button("Clear", variant="secondary")
391
+
392
+ gr.Markdown("Try some of the examples below")
393
+ gr.Examples(examples=examples,
394
+ inputs=[cond_img_t],
395
+ examples_per_page=18)
396
+
397
+ with gr.Column():
398
+ # Description
399
+ gr.Markdown(description_b)
400
+
401
+ segment_btn_b.click(segment_sementic,
402
+ inputs=[
403
+ cond_img_b,
404
+ text_box_b,
405
+ ],
406
+ outputs=[segm_img_b])
407
+
408
+ def clear():
409
+ return None, None, None
410
+
411
+ def clear_text():
412
+ return None, None, None
413
+
414
+ clear_btn_p.click(clear, outputs=[cond_img_p, segm_img_p, text_box_p])
415
+ clear_btn_t.click(clear_text, outputs=[cond_img_t, segm_img_t, text_box_t])
416
+ clear_btn_b.click(clear_text, outputs=[cond_img_b, segm_img_b, text_box_b])
417
+
418
+ demo.queue()
419
+ demo.launch()
examples/000000027620.jpg ADDED
examples/000000112634.jpg ADDED
examples/000000165713.jpg ADDED
examples/000000190756.jpg ADDED
examples/000000226058.jpg ADDED
examples/000000234779.jpg ADDED
examples/000000243075.jpg ADDED
examples/000000263860.jpg ADDED
examples/000000284762.jpg ADDED
examples/000000298738.jpg ADDED
examples/000000372819.jpg ADDED
examples/000000377814.jpg ADDED
examples/000000516143.jpg ADDED
examples/000000555050.jpg ADDED
examples/dogs.jpg ADDED
examples/flowers.jpg ADDED
examples/fruits.jpg ADDED
examples/image.jpg ADDED
examples/truck.jpg ADDED
regionspot/__init__.py ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ from .config import add_regionspot_config
2
+ from .detector import RegionSpot
3
+ from .data.dataset_mapper import RegionSpotDatasetMapper
4
+ from .test_time_augmentation import RegionSpotWithTTA
5
+ from .build import *
6
+ from .data.custom_dataset_dataloader import *
7
+ from .predictor import RegionSpot_Predictor
8
+ from .automatic_mask_generator import SamAutomaticMaskGenerator
9
+
10
+
regionspot/__pycache__/__init__.cpython-38.pyc ADDED
Binary file (610 Bytes). View file
 
regionspot/__pycache__/automatic_mask_generator.cpython-38.pyc ADDED
Binary file (15.4 kB). View file
 
regionspot/__pycache__/build.cpython-38.pyc ADDED
Binary file (10.8 kB). View file
 
regionspot/__pycache__/config.cpython-38.pyc ADDED
Binary file (1.14 kB). View file
 
regionspot/__pycache__/detector.cpython-38.pyc ADDED
Binary file (5.17 kB). View file
 
regionspot/__pycache__/predictor.cpython-38.pyc ADDED
Binary file (11 kB). View file
 
regionspot/__pycache__/test_time_augmentation.cpython-38.pyc ADDED
Binary file (7.79 kB). View file
 
regionspot/automatic_mask_generator.py ADDED
@@ -0,0 +1,632 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ import numpy as np
8
+ import torch
9
+ from torchvision.ops.boxes import batched_nms, box_area # type: ignore
10
+ import json
11
+
12
+ from typing import Any, Dict, List, Optional, Tuple
13
+
14
+ from .modeling.segment_anything.utils.transforms import ResizeLongestSide
15
+ # from .modeling import Sam
16
+ # from .predictor import SamPredictor
17
+ from .predictor import RegionSpot_Predictor
18
+ from .modeling.segment_anything.utils.amg import (
19
+ MaskData,
20
+ area_from_rle,
21
+ batch_iterator,
22
+ batched_mask_to_box,
23
+ box_xyxy_to_xywh,
24
+ build_all_layer_point_grids,
25
+ calculate_stability_score,
26
+ coco_encode_rle,
27
+ generate_crop_boxes,
28
+ is_box_near_crop_edge,
29
+ mask_to_rle_pytorch,
30
+ remove_small_regions,
31
+ rle_to_mask,
32
+ uncrop_boxes_xyxy,
33
+ uncrop_masks,
34
+ uncrop_points,
35
+ )
36
+
37
+
38
+ class SamAutomaticMaskGenerator:
39
+ def __init__(
40
+ self,
41
+ model,
42
+ points_per_side: Optional[int] = 32,
43
+ points_per_batch: int = 64,
44
+ pred_iou_thresh: float = 0.88,
45
+ stability_score_thresh: float = 0.95,
46
+ stability_score_offset: float = 1.0,
47
+ box_nms_thresh: float = 0.7,
48
+ crop_n_layers: int = 0,
49
+ crop_nms_thresh: float = 0.7,
50
+ crop_overlap_ratio: float = 512 / 1500,
51
+ crop_n_points_downscale_factor: int = 1,
52
+ point_grids: Optional[List[np.ndarray]] = None,
53
+ min_mask_region_area: int = 0,
54
+ output_mode: str = "binary_mask",
55
+ crop_thresh = 0.0,
56
+ box_thresh = 0.6,
57
+ mask_threshold = 0.0,
58
+ ) -> None:
59
+ """
60
+ Using a SAM model, generates masks for the entire image.
61
+ Generates a grid of point prompts over the image, then filters
62
+ low quality and duplicate masks. The default settings are chosen
63
+ for SAM with a ViT-H backbone.
64
+
65
+ Arguments:
66
+ model (Sam): The SAM model to use for mask prediction.
67
+ points_per_side (int or None): The number of points to be sampled
68
+ along one side of the image. The total number of points is
69
+ points_per_side**2. If None, 'point_grids' must provide explicit
70
+ point sampling.
71
+ points_per_batch (int): Sets the number of points run simultaneously
72
+ by the model. Higher numbers may be faster but use more GPU memory.
73
+ pred_iou_thresh (float): A filtering threshold in [0,1], using the
74
+ model's predicted mask quality.
75
+ stability_score_thresh (float): A filtering threshold in [0,1], using
76
+ the stability of the mask under changes to the cutoff used to binarize
77
+ the model's mask predictions.
78
+ stability_score_offset (float): The amount to shift the cutoff when
79
+ calculated the stability score.
80
+ box_nms_thresh (float): The box IoU cutoff used by non-maximal
81
+ suppression to filter duplicate masks.
82
+ crop_n_layers (int): If >0, mask prediction will be run again on
83
+ crops of the image. Sets the number of layers to run, where each
84
+ layer has 2**i_layer number of image crops.
85
+ crop_nms_thresh (float): The box IoU cutoff used by non-maximal
86
+ suppression to filter duplicate masks between different crops.
87
+ crop_overlap_ratio (float): Sets the degree to which crops overlap.
88
+ In the first crop layer, crops will overlap by this fraction of
89
+ the image length. Later layers with more crops scale down this overlap.
90
+ crop_n_points_downscale_factor (int): The number of points-per-side
91
+ sampled in layer n is scaled down by crop_n_points_downscale_factor**n.
92
+ point_grids (list(np.ndarray) or None): A list over explicit grids
93
+ of points used for sampling, normalized to [0,1]. The nth grid in the
94
+ list is used in the nth crop layer. Exclusive with points_per_side.
95
+ min_mask_region_area (int): If >0, postprocessing will be applied
96
+ to remove disconnected regions and holes in masks with area smaller
97
+ than min_mask_region_area. Requires opencv.
98
+ output_mode (str): The form masks are returned in. Can be 'binary_mask',
99
+ 'uncompressed_rle', or 'coco_rle'. 'coco_rle' requires pycocotools.
100
+ For large resolutions, 'binary_mask' may consume large amounts of
101
+ memory.
102
+ """
103
+
104
+ assert (points_per_side is None) != (
105
+ point_grids is None
106
+ ), "Exactly one of points_per_side or point_grid must be provided."
107
+ if points_per_side is not None:
108
+ self.point_grids = build_all_layer_point_grids(
109
+ points_per_side,
110
+ crop_n_layers,
111
+ crop_n_points_downscale_factor,
112
+ )
113
+ elif point_grids is not None:
114
+ self.point_grids = point_grids
115
+ else:
116
+ raise ValueError("Can't have both points_per_side and point_grid be None.")
117
+
118
+ assert output_mode in [
119
+ "binary_mask",
120
+ "uncompressed_rle",
121
+ "coco_rle",
122
+ ], f"Unknown output_mode {output_mode}."
123
+ if output_mode == "coco_rle":
124
+ from pycocotools import mask as mask_utils # type: ignore # noqa: F401
125
+
126
+ if min_mask_region_area > 0:
127
+ import cv2 # type: ignore # noqa: F401
128
+
129
+ # self.sam_clip = model
130
+ # self.model = self.sam_clip.sam
131
+ self.predictor = RegionSpot_Predictor(model)
132
+ self.points_per_batch = points_per_batch
133
+ self.pred_iou_thresh = pred_iou_thresh
134
+ self.stability_score_thresh = stability_score_thresh
135
+ self.stability_score_offset = stability_score_offset
136
+ self.box_nms_thresh = box_nms_thresh
137
+ self.crop_n_layers = crop_n_layers
138
+ self.crop_nms_thresh = crop_nms_thresh
139
+ self.crop_overlap_ratio = crop_overlap_ratio
140
+ self.crop_n_points_downscale_factor = crop_n_points_downscale_factor
141
+ self.min_mask_region_area = min_mask_region_area
142
+ self.output_mode = output_mode
143
+ self.crop_thresh = crop_thresh
144
+ self.box_thresh = box_thresh
145
+ self.mask_threshold = mask_threshold
146
+
147
+ @torch.no_grad()
148
+ def generate(self, image: np.ndarray) -> List[Dict[str, Any]]:
149
+ """
150
+ Generates masks for the given image.
151
+
152
+ Arguments:
153
+ image (np.ndarray): The image to generate masks for, in HWC uint8 format.
154
+
155
+ Returns:
156
+ list(dict(str, any)): A list over records for masks. Each record is
157
+ a dict containing the following keys:
158
+ segmentation (dict(str, any) or np.ndarray): The mask. If
159
+ output_mode='binary_mask', is an array of shape HW. Otherwise,
160
+ is a dictionary containing the RLE.
161
+ bbox (list(float)): The box around the mask, in XYWH format.
162
+ area (int): The area in pixels of the mask.
163
+ predicted_iou (float): The model's own prediction of the mask's
164
+ quality. This is filtered by the pred_iou_thresh parameter.
165
+ point_coords (list(list(float))): The point coordinates input
166
+ to the model to generate this mask.
167
+ stability_score (float): A measure of the mask's quality. This
168
+ is filtered on using the stability_score_thresh parameter.
169
+ crop_box (list(float)): The crop of the image used to generate
170
+ the mask, given in XYWH format.
171
+ """
172
+
173
+ # Generate masks
174
+ mask_data = self._generate_masks(image)
175
+ # Filter small disconnected regions and holes in masks
176
+ if self.min_mask_region_area > 0:
177
+ mask_data = self.postprocess_small_regions(
178
+ mask_data,
179
+ self.min_mask_region_area,
180
+ max(self.box_nms_thresh, self.crop_nms_thresh),
181
+ )
182
+
183
+
184
+ # transform = ResizeLongestSide(self.model.image_encoder.img_size)
185
+ self.predictor.set_image(image,clip_input_size=336)
186
+ total_data = MaskData()
187
+ total_data["pred_class"]=[]
188
+
189
+ maxvalue_box = 0
190
+
191
+ for box in mask_data["boxes"]:
192
+ box = self.predictor.transform.apply_boxes(box, self.predictor.original_size)
193
+ box_torch = torch.as_tensor(box, dtype=torch.float, device=self.predictor.device)
194
+ box_torch = box_torch[None, :]
195
+ masks, iou_preds, _, max_values, max_index = self.predictor.predict_torch(
196
+ point_coords=None,
197
+ point_labels=None,
198
+ boxes=box_torch,
199
+ mask_input=None,
200
+ multimask_output=False,
201
+ mask_threshold = self.mask_threshold,
202
+ )
203
+ bmax_values = max_values.detach().cpu().numpy()
204
+ bmax_index = max_index.detach().cpu().numpy()
205
+
206
+ pred_class = []
207
+ for i in range(bmax_index.shape[0]):
208
+ if bmax_values[i] > self.box_thresh:
209
+ pred_class.append(bmax_index[i])
210
+ else:
211
+ pred_class.append(-1)
212
+ # Serialize predictions and store in MaskData
213
+ data = MaskData(
214
+ masks=masks.flatten(0, 1),
215
+ iou_preds=iou_preds.flatten(0, 1),
216
+ pred_class=pred_class,
217
+ )
218
+ data["boxes"] = batched_mask_to_box(data["masks"])
219
+ data["rles"] = mask_to_rle_pytorch(data["masks"])
220
+ del data["masks"]
221
+ total_data.cat(data)
222
+ if total_data["pred_class"]==[]:
223
+ return False
224
+ if total_data["pred_class"]!=[]:
225
+ keep_mask= []
226
+ for i in total_data["pred_class"]:
227
+ if i != -1:
228
+ keep_mask.append(True)
229
+ else:
230
+ keep_mask.append(False)
231
+
232
+ keep_mask = torch.tensor(keep_mask)
233
+ total_data.filter(keep_mask)
234
+ mask_data = total_data
235
+
236
+
237
+ # Encode masks
238
+ if self.output_mode == "coco_rle":
239
+ mask_data["segmentations"] = [coco_encode_rle(rle) for rle in mask_data["rles"]]
240
+ elif self.output_mode == "binary_mask":
241
+ mask_data["segmentations"] = [rle_to_mask(rle) for rle in mask_data["rles"]]
242
+ else:
243
+ mask_data["segmentations"] = mask_data["rles"]
244
+
245
+ # Write mask records
246
+ curr_anns = []
247
+
248
+ for idx in range(len(mask_data["segmentations"])):
249
+
250
+ ann = {
251
+ "segmentation": mask_data["segmentations"][idx],
252
+ "area": area_from_rle(mask_data["rles"][idx]),
253
+ "bbox": box_xyxy_to_xywh(mask_data["boxes"][idx]).tolist(),
254
+ "predicted_iou": mask_data["iou_preds"][idx].item(),
255
+ "pred_class": mask_data["pred_class"][idx],
256
+ }
257
+ curr_anns.append(ann)
258
+
259
+ return curr_anns
260
+
261
+
262
+
263
+ ###################
264
+ @torch.no_grad()
265
+ def generate_point(self, image: np.ndarray, point:np.ndarray, label:np.ndarray) -> List[Dict[str, Any]]:
266
+ """
267
+ Generates masks for the given image.
268
+
269
+ Arguments:
270
+ image (np.ndarray): The image to generate masks for, in HWC uint8 format.
271
+
272
+ Returns:
273
+ list(dict(str, any)): A list over records for masks. Each record is
274
+ a dict containing the following keys:
275
+ segmentation (dict(str, any) or np.ndarray): The mask. If
276
+ output_mode='binary_mask', is an array of shape HW. Otherwise,
277
+ is a dictionary containing the RLE.
278
+ bbox (list(float)): The box around the mask, in XYWH format.
279
+ area (int): The area in pixels of the mask.
280
+ predicted_iou (float): The model's own prediction of the mask's
281
+ quality. This is filtered by the pred_iou_thresh parameter.
282
+ point_coords (list(list(float))): The point coordinates input
283
+ to the model to generate this mask.
284
+ stability_score (float): A measure of the mask's quality. This
285
+ is filtered on using the stability_score_thresh parameter.
286
+ crop_box (list(float)): The crop of the image used to generate
287
+ the mask, given in XYWH format.
288
+ """
289
+
290
+
291
+ # Generate masks
292
+ mask_data = self._generate_masks_point(image, point, label)
293
+ # Filter small disconnected regions and holes in masks
294
+ if self.min_mask_region_area > 0:
295
+ mask_data = self.postprocess_small_regions(
296
+ mask_data,
297
+ self.min_mask_region_area,
298
+ max(self.box_nms_thresh, self.crop_nms_thresh),
299
+ )
300
+ # transform = ResizeLongestSide(self.model.image_encoder.img_size)
301
+ self.predictor.set_image(image,clip_input_size=336)
302
+ total_data = MaskData()
303
+ total_data["pred_class"]=[]
304
+
305
+ maxvalue_box = 0
306
+
307
+ for box in mask_data["boxes"]:
308
+ box = self.predictor.transform.apply_boxes(box, self.predictor.original_size)
309
+ box_torch = torch.as_tensor(box, dtype=torch.float, device=self.predictor.device)
310
+ box_torch = box_torch[None, :]
311
+ masks, iou_preds, _, max_values, max_index = self.predictor.predict_torch(
312
+ point_coords=None,
313
+ point_labels=None,
314
+ boxes=box_torch,
315
+ mask_input=None,
316
+ multimask_output=False,
317
+ mask_threshold = self.mask_threshold,
318
+ )
319
+ bmax_values = max_values.detach().cpu().numpy()
320
+ bmax_index = max_index.detach().cpu().numpy()
321
+
322
+ pred_class = []
323
+ maxV = []
324
+ for i in range(bmax_index.shape[0]):
325
+ if bmax_values[i] > self.box_thresh:
326
+ pred_class.append(bmax_index[i])
327
+ else:
328
+ pred_class.append(-1)
329
+ for i in range(bmax_index.shape[0]):
330
+ maxV.append(bmax_values[i])
331
+ # Serialize predictions and store in MaskData
332
+ data = MaskData(
333
+ masks=masks.flatten(0, 1),
334
+ iou_preds=iou_preds.flatten(0, 1),
335
+ pred_class=pred_class,
336
+ maxValue = maxV,
337
+ )
338
+ data["boxes"] = batched_mask_to_box(data["masks"])
339
+ data["rles"] = mask_to_rle_pytorch(data["masks"])
340
+ del data["masks"]
341
+ total_data.cat(data)
342
+
343
+ if total_data["pred_class"]==[]:
344
+ return False
345
+ if total_data["maxValue"]!=[]:
346
+ keep_mask= []
347
+ for i in total_data["maxValue"]:
348
+ if i != max(total_data["maxValue"]):
349
+ keep_mask.append(False)
350
+ else:
351
+ keep_mask.append(True)
352
+ keep_mask = torch.tensor(keep_mask)
353
+ total_data.filter(keep_mask)
354
+ mask_data = total_data
355
+
356
+
357
+ # Encode masks
358
+ if self.output_mode == "coco_rle":
359
+ mask_data["segmentations"] = [coco_encode_rle(rle) for rle in mask_data["rles"]]
360
+ elif self.output_mode == "binary_mask":
361
+ mask_data["segmentations"] = [rle_to_mask(rle) for rle in mask_data["rles"]]
362
+ else:
363
+ mask_data["segmentations"] = mask_data["rles"]
364
+
365
+ # Write mask records
366
+ curr_anns = []
367
+
368
+ for idx in range(len(mask_data["segmentations"])):
369
+
370
+ ann = {
371
+ "segmentation": mask_data["segmentations"][idx],
372
+ "area": area_from_rle(mask_data["rles"][idx]),
373
+ "bbox": box_xyxy_to_xywh(mask_data["boxes"][idx]).tolist(),
374
+ "predicted_iou": mask_data["iou_preds"][idx].item(),
375
+ "pred_class": mask_data["pred_class"][idx],
376
+ }
377
+ curr_anns.append(ann)
378
+
379
+ return curr_anns
380
+
381
+
382
+ def _generate_masks_point(self, image: np.ndarray, point:np.ndarray, label:np.ndarray) -> MaskData:
383
+ self.predictor.set_image(image,clip_input_size=336)
384
+ orig_size = image.shape[:2]
385
+
386
+ point = np.array(point)
387
+ transformed_points = self.predictor.transform.apply_coords(point, orig_size)
388
+ in_points = torch.as_tensor(transformed_points, device=self.predictor.device).reshape(-1,2)
389
+ in_labels = torch.as_tensor(label, device=self.predictor.device)
390
+ # self.predictor.set_image(image,clip_input_size=336)
391
+ masks, iou_preds, _, max_values, max_index = self.predictor.predict_torch(
392
+ in_points[:, None, :],
393
+ in_labels[:, None],
394
+ multimask_output=True,
395
+ return_logits=True,
396
+ mask_threshold = self.mask_threshold,
397
+ )
398
+
399
+ max_values = max_values.detach().cpu().numpy()
400
+ max_index = max_index.detach().cpu().numpy()
401
+ pred_class = []
402
+ for i in range(max_index.shape[0]):
403
+ if max_values[i] > self.crop_thresh:
404
+ pred_class.append(max_index[i])
405
+ else:
406
+ pred_class.append(-1)
407
+
408
+ # Serialize predictions and store in MaskData
409
+ data = MaskData(
410
+ masks=masks.flatten(0, 1),
411
+ iou_preds=iou_preds.flatten(0, 1),
412
+ pred_class=pred_class,
413
+ # points=torch.as_tensor(points.repeat(masks.shape[1], axis=0)),
414
+ )
415
+ del masks
416
+ # Filter by predicted IoU
417
+ # if self.pred_iou_thresh > 0.0:
418
+ # keep_mask = data["iou_preds"] > self.pred_iou_thresh
419
+ # data.filter(keep_mask)
420
+ if data["pred_class"]!=[]:
421
+
422
+ keep_mask= []
423
+ for i in data["pred_class"]:
424
+ if i != -1:
425
+ keep_mask.append(True)
426
+ else:
427
+ keep_mask.append(False)
428
+
429
+ keep_mask = torch.tensor(keep_mask)
430
+ data.filter(keep_mask)
431
+
432
+ # Threshold masks and calculate boxes
433
+ data["masks"] = data["masks"] > self.predictor.model.mask_threshold
434
+ data["boxes"] = batched_mask_to_box(data["masks"])
435
+ data["rles"] = mask_to_rle_pytorch(data["masks"])
436
+
437
+ del data["masks"]
438
+
439
+ keep_by_nms = batched_nms(
440
+ data["boxes"].float(),
441
+ data["iou_preds"],
442
+ torch.zeros_like(data["boxes"][:, 0]), # categories
443
+ iou_threshold=self.box_nms_thresh,
444
+ )
445
+ data.filter(keep_by_nms)
446
+
447
+ data.to_numpy()
448
+ return data
449
+
450
+ def _generate_masks(self, image: np.ndarray) -> MaskData:
451
+ orig_size = image.shape[:2]
452
+ crop_boxes, layer_idxs = generate_crop_boxes(
453
+ orig_size, self.crop_n_layers, self.crop_overlap_ratio
454
+ )
455
+ # Iterate over image crops
456
+ data = MaskData()
457
+ for crop_box, layer_idx in zip(crop_boxes, layer_idxs):
458
+ crop_data = self._process_crop(image, crop_box, layer_idx, orig_size)
459
+ data.cat(crop_data)
460
+
461
+ # Remove duplicate masks between crops
462
+ if len(crop_boxes) > 1:
463
+ # Prefer masks from smaller crops
464
+ scores = 1 / box_area(data["crop_boxes"])
465
+ scores = scores.to(data["boxes"].device)
466
+ keep_by_nms = batched_nms(
467
+ data["boxes"].float(),
468
+ scores,
469
+ torch.zeros_like(data["boxes"][:, 0]), # categories
470
+ iou_threshold=self.crop_nms_thresh,
471
+ )
472
+ data.filter(keep_by_nms)
473
+ data.to_numpy()
474
+ return data
475
+
476
+ def _process_crop(
477
+ self,
478
+ image: np.ndarray,
479
+ crop_box: List[int],
480
+ crop_layer_idx: int,
481
+ orig_size: Tuple[int, ...],
482
+ ) -> MaskData:
483
+ # Crop the image and calculate embeddings
484
+ x0, y0, x1, y1 = crop_box
485
+ cropped_im = image[y0:y1, x0:x1, :]
486
+ cropped_im_size = cropped_im.shape[:2]
487
+ self.predictor.set_image(cropped_im,clip_input_size=336)
488
+
489
+ # Get points for this crop
490
+ points_scale = np.array(cropped_im_size)[None, ::-1]
491
+ points_for_image = self.point_grids[crop_layer_idx] * points_scale
492
+
493
+ # Generate masks for this crop in batches
494
+ data = MaskData()
495
+ for (points,) in batch_iterator(self.points_per_batch, points_for_image):
496
+ batch_data = self._process_batch(points, cropped_im_size, crop_box, orig_size)
497
+ data.cat(batch_data)
498
+ del batch_data
499
+ self.predictor.reset_image()
500
+
501
+ # Remove duplicates within this crop.
502
+ keep_by_nms = batched_nms(
503
+ data["boxes"].float(),
504
+ data["iou_preds"],
505
+ torch.zeros_like(data["boxes"][:, 0]), # categories
506
+ iou_threshold=self.box_nms_thresh,
507
+ )
508
+ data.filter(keep_by_nms)
509
+ # Return to the original image frame
510
+ data["boxes"] = uncrop_boxes_xyxy(data["boxes"], crop_box)
511
+ data["points"] = uncrop_points(data["points"], crop_box)
512
+ data["crop_boxes"] = torch.tensor([crop_box for _ in range(len(data["rles"]))])
513
+
514
+ return data
515
+
516
+ def _process_batch(
517
+ self,
518
+ points: np.ndarray,
519
+ im_size: Tuple[int, ...],
520
+ crop_box: List[int],
521
+ orig_size: Tuple[int, ...],
522
+ ) -> MaskData:
523
+ orig_h, orig_w = orig_size
524
+
525
+ # Run model on this batch
526
+ transformed_points = self.predictor.transform.apply_coords(points, im_size)
527
+ in_points = torch.as_tensor(transformed_points, device=self.predictor.device)
528
+ in_labels = torch.ones(in_points.shape[0], dtype=torch.int, device=in_points.device)
529
+ # import ipdb; ipdb.set_trace()
530
+ masks, iou_preds, _, max_values, max_index = self.predictor.predict_torch(
531
+ in_points[:, None, :],
532
+ in_labels[:, None],
533
+ multimask_output=True,
534
+ return_logits=True,
535
+ mask_threshold = self.mask_threshold,
536
+ )
537
+ max_values = max_values.detach().cpu().numpy()
538
+ max_index = max_index.detach().cpu().numpy()
539
+ pred_class = []
540
+ for i in range(max_index.shape[0]):
541
+ if max_values[i] > self.crop_thresh:
542
+ pred_class.append(max_index[i])
543
+ else:
544
+ pred_class.append(-1)
545
+
546
+ # Serialize predictions and store in MaskData
547
+ data = MaskData(
548
+ masks=masks.flatten(0, 1),
549
+ iou_preds=iou_preds.flatten(0, 1),
550
+ pred_class=pred_class,
551
+ points=torch.as_tensor(points.repeat(masks.shape[1], axis=0)),
552
+ )
553
+ del masks
554
+
555
+ if data["pred_class"]!=[]:
556
+
557
+ keep_mask= []
558
+ for i in data["pred_class"]:
559
+ if i != -1:
560
+ keep_mask.append(True)
561
+ else:
562
+ keep_mask.append(False)
563
+
564
+ keep_mask = torch.tensor(keep_mask)
565
+ data.filter(keep_mask)
566
+
567
+ # Threshold masks and calculate boxes
568
+ data["masks"] = data["masks"] > self.predictor.model.mask_threshold
569
+ data["boxes"] = batched_mask_to_box(data["masks"])
570
+
571
+ # Filter boxes that touch crop boundaries
572
+ keep_mask = ~is_box_near_crop_edge(data["boxes"], crop_box, [0, 0, orig_w, orig_h])
573
+ if not torch.all(keep_mask):
574
+ data.filter(keep_mask)
575
+
576
+ # Compress to RLE
577
+ data["masks"] = uncrop_masks(data["masks"], crop_box, orig_h, orig_w)
578
+ data["rles"] = mask_to_rle_pytorch(data["masks"])
579
+ del data["masks"]
580
+
581
+ return data
582
+
583
+ @staticmethod
584
+ def postprocess_small_regions(
585
+ mask_data: MaskData, min_area: int, nms_thresh: float
586
+ ) -> MaskData:
587
+ """
588
+ Removes small disconnected regions and holes in masks, then reruns
589
+ box NMS to remove any new duplicates.
590
+
591
+ Edits mask_data in place.
592
+
593
+ Requires open-cv as a dependency.
594
+ """
595
+ if len(mask_data["rles"]) == 0:
596
+ return mask_data
597
+
598
+ # Filter small disconnected regions and holes
599
+ new_masks = []
600
+ scores = []
601
+ for rle in mask_data["rles"]:
602
+ mask = rle_to_mask(rle)
603
+
604
+ mask, changed = remove_small_regions(mask, min_area, mode="holes")
605
+ unchanged = not changed
606
+ mask, changed = remove_small_regions(mask, min_area, mode="islands")
607
+ unchanged = unchanged and not changed
608
+
609
+ new_masks.append(torch.as_tensor(mask).unsqueeze(0))
610
+ # Give score=0 to changed masks and score=1 to unchanged masks
611
+ # so NMS will prefer ones that didn't need postprocessing
612
+ scores.append(float(unchanged))
613
+
614
+ # Recalculate boxes and remove any new duplicates
615
+ masks = torch.cat(new_masks, dim=0)
616
+ boxes = batched_mask_to_box(masks)
617
+ keep_by_nms = batched_nms(
618
+ boxes.float(),
619
+ torch.as_tensor(scores),
620
+ torch.zeros_like(boxes[:, 0]), # categories
621
+ iou_threshold=nms_thresh,
622
+ )
623
+
624
+ # Only recalculate RLEs for masks that have changed
625
+ for i_mask in keep_by_nms:
626
+ if scores[i_mask] == 0.0:
627
+ mask_torch = masks[i_mask].unsqueeze(0)
628
+ mask_data["rles"][i_mask] = mask_to_rle_pytorch(mask_torch)[0]
629
+ mask_data["boxes"][i_mask] = boxes[i_mask] # update res directly
630
+ mask_data.filter(keep_by_nms)
631
+
632
+ return mask_data
regionspot/build.py ADDED
@@ -0,0 +1,307 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import itertools
2
+ import logging
3
+ import torch.utils.data
4
+
5
+ from detectron2.config import CfgNode, configurable
6
+ from detectron2.data.build import (
7
+ build_batch_data_loader,
8
+ load_proposals_into_dataset,
9
+ trivial_batch_collator,
10
+ )
11
+ from detectron2.data.catalog import DatasetCatalog
12
+ from detectron2.data.common import DatasetFromList, MapDataset
13
+ from detectron2.data.dataset_mapper import DatasetMapper
14
+ from detectron2.data.samplers import InferenceSampler, TrainingSampler
15
+ from detectron2.utils.comm import get_world_size
16
+
17
+ from torch.utils.data.sampler import Sampler
18
+ from collections import defaultdict
19
+ from typing import Optional
20
+ from detectron2.utils import comm
21
+
22
+
23
+ def _compute_num_images_per_worker(cfg: CfgNode):
24
+ num_workers = get_world_size()
25
+ images_per_batch = cfg.SOLVER.IMS_PER_BATCH
26
+ assert (
27
+ images_per_batch % num_workers == 0
28
+ ), "SOLVER.IMS_PER_BATCH ({}) must be divisible by the number of workers ({}).".format(
29
+ images_per_batch, num_workers
30
+ )
31
+ assert (
32
+ images_per_batch >= num_workers
33
+ ), "SOLVER.IMS_PER_BATCH ({}) must be larger than the number of workers ({}).".format(
34
+ images_per_batch, num_workers
35
+ )
36
+ images_per_worker = images_per_batch // num_workers
37
+ return images_per_worker
38
+
39
+
40
+ def filter_images_with_only_crowd_annotations(dataset_dicts, dataset_names):
41
+ """
42
+ Filter out images with none annotations or only crowd annotations
43
+ (i.e., images without non-crowd annotations).
44
+ A common training-time preprocessing on COCO dataset.
45
+
46
+ Args:
47
+ dataset_dicts (list[dict]): annotations in Detectron2 Dataset format.
48
+
49
+ Returns:
50
+ list[dict]: the same format, but filtered.
51
+ """
52
+ num_before = len(dataset_dicts)
53
+
54
+ def valid(anns):
55
+ for ann in anns:
56
+ if isinstance(ann, list):
57
+ for instance in ann:
58
+ if instance.get("iscrowd", 0) == 0:
59
+ return True
60
+ else:
61
+ if ann.get("iscrowd", 0) == 0:
62
+ return True
63
+ return False
64
+
65
+ dataset_dicts = [x for x in dataset_dicts if valid(x["annotations"])]
66
+ num_after = len(dataset_dicts)
67
+ logger = logging.getLogger(__name__)
68
+ logger.info(
69
+ "Removed {} images with no usable annotations. {} images left.".format(
70
+ num_before - num_after, num_after
71
+ )
72
+ )
73
+ return dataset_dicts
74
+
75
+
76
+ def get_detection_dataset_dicts(
77
+ dataset_names, filter_empty=True, proposal_files=None
78
+ ):
79
+ """
80
+ Load and prepare dataset dicts for instance detection/segmentation and semantic segmentation.
81
+
82
+ Args:
83
+ dataset_names (str or list[str]): a dataset name or a list of dataset names
84
+ filter_empty (bool): whether to filter out images without instance annotations
85
+ proposal_files (list[str]): if given, a list of object proposal files
86
+ that match each dataset in `dataset_names`.
87
+
88
+ Returns:
89
+ list[dict]: a list of dicts following the standard dataset dict format.
90
+ """
91
+ if isinstance(dataset_names, str):
92
+ dataset_names = [dataset_names]
93
+ assert len(dataset_names)
94
+ dataset_dicts = [DatasetCatalog.get(dataset_name) for dataset_name in dataset_names]
95
+ for dataset_name, dicts in zip(dataset_names, dataset_dicts):
96
+ assert len(dicts), "Dataset '{}' is empty!".format(dataset_name)
97
+
98
+ if proposal_files is not None:
99
+ assert len(dataset_names) == len(proposal_files)
100
+ # load precomputed proposals from proposal files
101
+ dataset_dicts = [
102
+ load_proposals_into_dataset(dataset_i_dicts, proposal_file)
103
+ for dataset_i_dicts, proposal_file in zip(dataset_dicts, proposal_files)
104
+ ]
105
+
106
+ dataset_dicts = list(itertools.chain.from_iterable(dataset_dicts))
107
+
108
+ has_instances = "annotations" in dataset_dicts[0]
109
+ if filter_empty and has_instances:
110
+ dataset_dicts = filter_images_with_only_crowd_annotations(dataset_dicts, dataset_names)
111
+
112
+ assert len(dataset_dicts), "No valid data found in {}.".format(",".join(dataset_names))
113
+ return dataset_dicts
114
+
115
+
116
+ def _train_loader_from_config(cfg, mapper, *, dataset=None, sampler=None):
117
+ if dataset is None:
118
+ dataset = get_detection_dataset_dicts(
119
+ cfg.DATASETS.TRAIN,
120
+ filter_empty=cfg.DATALOADER.FILTER_EMPTY_ANNOTATIONS,
121
+ proposal_files=cfg.DATASETS.PROPOSAL_FILES_TRAIN if cfg.MODEL.LOAD_PROPOSALS else None,
122
+ )
123
+
124
+ if mapper is None:
125
+ mapper = DatasetMapper(cfg, True)
126
+
127
+ if sampler is None:
128
+ sampler_name = cfg.DATALOADER.SAMPLER_TRAIN
129
+ logger = logging.getLogger(__name__)
130
+ logger.info("Using training sampler {}".format(sampler_name))
131
+ if sampler_name == "TrainingSampler":
132
+ sampler = TrainingSampler(len(dataset))
133
+ elif sampler_name == "ClassAwareSampler":
134
+ sampler = ClassAwareSampler(dataset)
135
+
136
+ return {
137
+ "dataset": dataset,
138
+ "sampler": sampler,
139
+ "mapper": mapper,
140
+ "total_batch_size": cfg.SOLVER.IMS_PER_BATCH,
141
+ "aspect_ratio_grouping": cfg.DATALOADER.ASPECT_RATIO_GROUPING,
142
+ "num_workers": cfg.DATALOADER.NUM_WORKERS,
143
+ "use_mixup": True
144
+ }
145
+
146
+
147
+ # TODO can allow dataset as an iterable or IterableDataset to make this function more general
148
+ @configurable(from_config=_train_loader_from_config)
149
+ def build_detection_train_loader(
150
+ dataset, *, mapper, sampler=None, total_batch_size, aspect_ratio_grouping=True, num_workers=0,
151
+ use_mixup=False
152
+ ):
153
+ """
154
+ Build a dataloader for object detection with some default features.
155
+ This interface is experimental.
156
+
157
+ Args:
158
+ dataset (list or torch.utils.data.Dataset): a list of dataset dicts,
159
+ or a map-style pytorch dataset. They can be obtained by using
160
+ :func:`DatasetCatalog.get` or :func:`get_detection_dataset_dicts`.
161
+ mapper (callable): a callable which takes a sample (dict) from dataset and
162
+ returns the format to be consumed by the model.
163
+ When using cfg, the default choice is ``DatasetMapper(cfg, is_train=True)``.
164
+ sampler (torch.utils.data.sampler.Sampler or None): a sampler that
165
+ produces indices to be applied on ``dataset``.
166
+ Default to :class:`TrainingSampler`, which coordinates a random shuffle
167
+ sequence across all workers.
168
+ total_batch_size (int): total batch size across all workers. Batching
169
+ simply puts data into a list.
170
+ aspect_ratio_grouping (bool): whether to group images with similar
171
+ aspect ratio for efficiency. When enabled, it requires each
172
+ element in dataset be a dict with keys "width" and "height".
173
+ num_workers (int): number of parallel data loading workers
174
+
175
+ Returns:
176
+ torch.utils.data.DataLoader: a dataloader. Each output from it is a
177
+ ``list[mapped_element]`` of length ``total_batch_size / num_workers``,
178
+ where ``mapped_element`` is produced by the ``mapper``.
179
+ """
180
+ if isinstance(dataset, list):
181
+ dataset = DatasetFromList(dataset, copy=False)
182
+ if mapper is not None:
183
+ if use_mixup:
184
+ dataset = MapDatasetMixup(dataset, mapper)
185
+ else:
186
+ dataset = MapDataset(dataset, mapper)
187
+ if sampler is None:
188
+ sampler = TrainingSampler(len(dataset))
189
+ assert isinstance(sampler, torch.utils.data.sampler.Sampler)
190
+ return build_batch_data_loader(
191
+ dataset,
192
+ sampler,
193
+ total_batch_size,
194
+ aspect_ratio_grouping=aspect_ratio_grouping,
195
+ num_workers=num_workers,
196
+ )
197
+
198
+
199
+ def _test_loader_from_config(cfg, dataset_name, mapper=None):
200
+ """
201
+ Uses the given `dataset_name` argument (instead of the names in cfg), because the
202
+ standard practice is to evaluate each test set individually (not combining them).
203
+ """
204
+ dataset = get_detection_dataset_dicts(
205
+ [dataset_name],
206
+ filter_empty=False,
207
+ proposal_files=[
208
+ cfg.DATASETS.PROPOSAL_FILES_TEST[list(cfg.DATASETS.TEST).index(dataset_name)]
209
+ ]
210
+ if cfg.MODEL.LOAD_PROPOSALS
211
+ else None,
212
+ )
213
+ if mapper is None:
214
+ mapper = DatasetMapper(cfg, False)
215
+ return {"dataset": dataset, "mapper": mapper, "num_workers": cfg.DATALOADER.NUM_WORKERS}
216
+
217
+
218
+ @configurable(from_config=_test_loader_from_config)
219
+ def build_detection_test_loader(dataset, *, mapper, num_workers=0):
220
+ """
221
+ Similar to `build_detection_train_loader`, but uses a batch size of 1.
222
+ This interface is experimental.
223
+
224
+ Args:
225
+ dataset (list or torch.utils.data.Dataset): a list of dataset dicts,
226
+ or a map-style pytorch dataset. They can be obtained by using
227
+ :func:`DatasetCatalog.get` or :func:`get_detection_dataset_dicts`.
228
+ mapper (callable): a callable which takes a sample (dict) from dataset
229
+ and returns the format to be consumed by the model.
230
+ When using cfg, the default choice is ``DatasetMapper(cfg, is_train=False)``.
231
+ num_workers (int): number of parallel data loading workers
232
+
233
+ Returns:
234
+ DataLoader: a torch DataLoader, that loads the given detection
235
+ dataset, with test-time transformation and batching.
236
+
237
+ Examples:
238
+ ::
239
+ data_loader = build_detection_test_loader(
240
+ DatasetRegistry.get("my_test"),
241
+ mapper=DatasetMapper(...))
242
+
243
+ # or, instantiate with a CfgNode:
244
+ data_loader = build_detection_test_loader(cfg, "my_test")
245
+ """
246
+ if isinstance(dataset, list):
247
+ dataset = DatasetFromList(dataset, copy=False)
248
+ if mapper is not None:
249
+ dataset = MapDataset(dataset, mapper)
250
+ sampler = InferenceSampler(len(dataset))
251
+ # Always use 1 image per worker during inference since this is the
252
+ # standard when reporting inference time in papers.
253
+ # batch_sampler = torch.utils.data.sampler.BatchSampler(sampler, 1, drop_last=False)
254
+ data_loader = torch.utils.data.DataLoader(
255
+ dataset,
256
+ batch_size=1,
257
+ sampler=sampler,
258
+ drop_last=False,
259
+ num_workers=num_workers,
260
+ collate_fn=trivial_batch_collator,
261
+ )
262
+ return data_loader
263
+
264
+
265
+ class ClassAwareSampler(Sampler):
266
+ def __init__(self, dataset_dicts, seed: Optional[int] = None):
267
+ """
268
+ """
269
+ self._size = len(dataset_dicts)
270
+ assert self._size > 0
271
+ if seed is None:
272
+ seed = comm.shared_random_seed()
273
+ self._seed = int(seed)
274
+
275
+ self._rank = comm.get_rank()
276
+ self._world_size = comm.get_world_size()
277
+ self.weights = self._get_class_balance_factor(dataset_dicts)
278
+
279
+
280
+ def __iter__(self):
281
+ start = self._rank
282
+ yield from itertools.islice(
283
+ self._infinite_indices(), start, None, self._world_size)
284
+
285
+
286
+ def _infinite_indices(self):
287
+ g = torch.Generator()
288
+ g.manual_seed(self._seed)
289
+ while True:
290
+ ids = torch.multinomial(
291
+ self.weights, self._size, generator=g,
292
+ replacement=True)
293
+ yield from ids
294
+
295
+
296
+ def _get_class_balance_factor(self, dataset_dicts, l=1.):
297
+ ret = []
298
+ category_freq = defaultdict(int)
299
+ for dataset_dict in dataset_dicts: # For each image (without repeats)
300
+ cat_ids = {ann["category_id"] for ann in dataset_dict["annotations"]}
301
+ for cat_id in cat_ids:
302
+ category_freq[cat_id] += 1
303
+ for i, dataset_dict in enumerate(dataset_dicts):
304
+ cat_ids = {ann["category_id"] for ann in dataset_dict["annotations"]}
305
+ ret.append(sum(
306
+ [1. / (category_freq[cat_id] ** l) for cat_id in cat_ids]))
307
+ return torch.tensor(ret).float()
regionspot/config.py ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from detectron2.config import CfgNode as CN
2
+
3
+
4
+ def add_regionspot_config(cfg):
5
+ """
6
+ Add config for RegionSpot
7
+ """
8
+ cfg.MODEL.RegionSpot = CN()
9
+ cfg.MODEL.CLIP_TYPE = 'CLIP_400M_Large'
10
+ cfg.MODEL.CLIP_INPUT_SIZE = 224
11
+ # Inference
12
+ cfg.MODEL.TRAINING = True
13
+ cfg.MODEL.BOX_TYPE = 'GT'
14
+
15
+ #Dataloder
16
+ cfg.DATALOADER.DATASET_RATIO = [1,1,1] # sample ratio
17
+ cfg.DATALOADER.USE_RFS = [False, False, False]
18
+ cfg.DATALOADER.MULTI_DATASET_GROUPING = True # Always true when multi-dataset is enabled
19
+ cfg.DATALOADER.DATASET_ANN = ['box', 'box', 'box'] # Annotation type of each dataset
20
+ cfg.DATALOADER.USE_DIFF_BS_SIZE = False # Use different batchsize for each dataset
21
+ cfg.DATALOADER.DATASET_BS = [8, 32] # Used when USE_DIFF_BS_SIZE is on
22
+
23
+
24
+
25
+ # Optimizer.
26
+ cfg.SOLVER.OPTIMIZER = "ADAMW"
27
+ cfg.SOLVER.BACKBONE_MULTIPLIER = 1.0
28
+
29
+ # TTA.
30
+ cfg.TEST.AUG.MIN_SIZES = (400, 500, 600, 640, 700, 900, 1000, 1100, 1200, 1300, 1400, 1800, 800)
31
+ cfg.TEST.AUG.CVPODS_TTA = True
32
+ cfg.TEST.AUG.SCALE_FILTER = True
33
+ cfg.TEST.AUG.SCALE_RANGES = ([96, 10000], [96, 10000],
34
+ [64, 10000], [64, 10000],
35
+ [64, 10000], [0, 10000],
36
+ [0, 10000], [0, 256],
37
+ [0, 256], [0, 192],
38
+ [0, 192], [0, 96],
39
+ [0, 10000])
regionspot/data/__pycache__/custom_dataset_dataloader.cpython-38.pyc ADDED
Binary file (10.3 kB). View file
 
regionspot/data/__pycache__/dataset_mapper.cpython-38.pyc ADDED
Binary file (3.87 kB). View file
 
regionspot/data/__pycache__/v3det_categories.cpython-38.pyc ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3ba3ef77b19c8f288db6ed9ac232384853c7d27413c35d662423586824480519
3
+ size 1552733
regionspot/data/custom_dataset_dataloader.py ADDED
@@ -0,0 +1,331 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Facebook, Inc. and its affiliates.
2
+ # Part of the code is from https://github.com/xingyizhou/UniDet/blob/master/projects/UniDet/unidet/data/multi_dataset_dataloader.py (Apache-2.0 License)
3
+ import copy
4
+ import logging
5
+ import numpy as np
6
+ import operator
7
+ import torch
8
+ import torch.utils.data
9
+ import json
10
+ from detectron2.utils.comm import get_world_size
11
+ from detectron2.utils.logger import _log_api_usage, log_first_n
12
+
13
+ from detectron2.config import configurable
14
+ from detectron2.data import samplers
15
+ from torch.utils.data.sampler import BatchSampler, Sampler
16
+ from detectron2.data.common import DatasetFromList, MapDataset
17
+ from detectron2.data.dataset_mapper import DatasetMapper
18
+ from detectron2.data.build import get_detection_dataset_dicts, build_batch_data_loader
19
+ from detectron2.data.samplers import TrainingSampler, RepeatFactorTrainingSampler
20
+ from detectron2.data.build import worker_init_reset_seed, print_instances_class_histogram
21
+ from detectron2.data.build import filter_images_with_only_crowd_annotations
22
+ from detectron2.data.build import filter_images_with_few_keypoints
23
+ from detectron2.data.build import check_metadata_consistency
24
+ from detectron2.data.catalog import MetadataCatalog, DatasetCatalog
25
+ from detectron2.utils import comm
26
+ import itertools
27
+ import math
28
+ from collections import defaultdict
29
+ from typing import Optional
30
+
31
+
32
+ def _custom_train_loader_from_config(cfg, mapper=None, *, dataset=None, sampler=None):
33
+ sampler_name = cfg.DATALOADER.SAMPLER_TRAIN # "MultiDatasetSampler"
34
+ if 'MultiDataset' in sampler_name: # True
35
+ dataset_dicts = get_detection_dataset_dicts_with_source(
36
+ cfg.DATASETS.TRAIN,
37
+ filter_empty=cfg.DATALOADER.FILTER_EMPTY_ANNOTATIONS,
38
+ min_keypoints=cfg.MODEL.ROI_KEYPOINT_HEAD.MIN_KEYPOINTS_PER_IMAGE
39
+ if cfg.MODEL.KEYPOINT_ON else 0,
40
+ proposal_files=cfg.DATASETS.PROPOSAL_FILES_TRAIN if cfg.MODEL.LOAD_PROPOSALS else None,
41
+ )
42
+ else: # False
43
+ dataset_dicts = get_detection_dataset_dicts(
44
+ cfg.DATASETS.TRAIN,
45
+ filter_empty=cfg.DATALOADER.FILTER_EMPTY_ANNOTATIONS,
46
+ min_keypoints=cfg.MODEL.ROI_KEYPOINT_HEAD.MIN_KEYPOINTS_PER_IMAGE
47
+ if cfg.MODEL.KEYPOINT_ON else 0,
48
+ proposal_files=cfg.DATASETS.PROPOSAL_FILES_TRAIN if cfg.MODEL.LOAD_PROPOSALS else None,
49
+ )
50
+
51
+ if mapper is None: # False
52
+ mapper = DatasetMapper(cfg, True)
53
+
54
+ if sampler is not None:
55
+ pass
56
+ elif sampler_name == "TrainingSampler": # False
57
+ sampler = TrainingSampler(len(dataset))
58
+ elif sampler_name == "MultiDatasetSampler": # True
59
+ sampler = MultiDatasetSampler(
60
+ dataset_dicts,
61
+ dataset_ratio = cfg.DATALOADER.DATASET_RATIO,
62
+ use_rfs = cfg.DATALOADER.USE_RFS,
63
+ dataset_ann = cfg.DATALOADER.DATASET_ANN,
64
+ repeat_threshold = cfg.DATALOADER.REPEAT_THRESHOLD,
65
+ )
66
+ elif sampler_name == "RepeatFactorTrainingSampler": # False
67
+ repeat_factors = RepeatFactorTrainingSampler.repeat_factors_from_category_frequency(
68
+ dataset_dicts, cfg.DATALOADER.REPEAT_THRESHOLD
69
+ )
70
+ sampler = RepeatFactorTrainingSampler(repeat_factors)
71
+ else:
72
+ raise ValueError("Unknown training sampler: {}".format(sampler_name))
73
+
74
+ return {
75
+ "dataset": dataset_dicts,
76
+ "sampler": sampler,
77
+ "mapper": mapper,
78
+ "total_batch_size": cfg.SOLVER.IMS_PER_BATCH, # 64
79
+ "aspect_ratio_grouping": cfg.DATALOADER.ASPECT_RATIO_GROUPING,
80
+ "num_workers": cfg.DATALOADER.NUM_WORKERS, # 8
81
+ 'multi_dataset_grouping': cfg.DATALOADER.MULTI_DATASET_GROUPING, # True
82
+ 'use_diff_bs_size': cfg.DATALOADER.USE_DIFF_BS_SIZE, # True
83
+ 'dataset_bs': cfg.DATALOADER.DATASET_BS, # [8, 32]
84
+ 'num_datasets': len(cfg.DATASETS.TRAIN) # 2
85
+ }
86
+
87
+
88
+ @configurable(from_config=_custom_train_loader_from_config)
89
+ def build_custom_train_loader(
90
+ dataset, *, mapper, sampler,
91
+ total_batch_size=16, # 64
92
+ aspect_ratio_grouping=True,
93
+ num_workers=0, # 8
94
+ num_datasets=1, # 2
95
+ multi_dataset_grouping=False, # True
96
+ use_diff_bs_size=False, # True
97
+ dataset_bs=[] # [8, 32]
98
+ ):
99
+ """
100
+ Modified from detectron2.data.build.build_custom_train_loader, but supports
101
+ different samplers
102
+ """
103
+ if isinstance(dataset, list):
104
+ dataset = DatasetFromList(dataset, copy=False)
105
+ if mapper is not None: # True
106
+ dataset = MapDataset(dataset, mapper)
107
+ if sampler is None: # False
108
+ sampler = TrainingSampler(len(dataset))
109
+ assert isinstance(sampler, torch.utils.data.sampler.Sampler)
110
+ if multi_dataset_grouping: # True
111
+ return build_multi_dataset_batch_data_loader(
112
+ use_diff_bs_size,
113
+ dataset_bs,
114
+ dataset,
115
+ sampler,
116
+ total_batch_size,
117
+ num_datasets=num_datasets,
118
+ num_workers=num_workers,
119
+ )
120
+ else: # False
121
+ return build_batch_data_loader(
122
+ dataset,
123
+ sampler,
124
+ total_batch_size,
125
+ aspect_ratio_grouping=aspect_ratio_grouping,
126
+ num_workers=num_workers,
127
+ )
128
+
129
+
130
+ def build_multi_dataset_batch_data_loader(
131
+ use_diff_bs_size, dataset_bs,
132
+ dataset, sampler, total_batch_size, num_datasets, num_workers=0
133
+ ):
134
+ """
135
+ """
136
+ world_size = get_world_size()
137
+ assert (
138
+ total_batch_size > 0 and total_batch_size % world_size == 0
139
+ ), "Total batch size ({}) must be divisible by the number of gpus ({}).".format(
140
+ total_batch_size, world_size
141
+ )
142
+
143
+ batch_size = total_batch_size // world_size
144
+ data_loader = torch.utils.data.DataLoader(
145
+ dataset,
146
+ sampler=sampler,
147
+ num_workers=num_workers,
148
+ batch_sampler=None,
149
+ collate_fn=operator.itemgetter(0), # don't batch, but yield individual elements
150
+ worker_init_fn=worker_init_reset_seed,
151
+ ) # yield individual mapped dict
152
+ if use_diff_bs_size:
153
+ return DIFFMDAspectRatioGroupedDataset(
154
+ data_loader, dataset_bs, num_datasets)
155
+ else:
156
+ return MDAspectRatioGroupedDataset(
157
+ data_loader, batch_size, num_datasets)
158
+
159
+
160
+ def get_detection_dataset_dicts_with_source(
161
+ dataset_names, filter_empty=True, min_keypoints=0, proposal_files=None
162
+ ):
163
+ assert len(dataset_names)
164
+ dataset_dicts = [DatasetCatalog.get(dataset_name) for dataset_name in dataset_names]
165
+ for dataset_name, dicts in zip(dataset_names, dataset_dicts):
166
+ assert len(dicts), "Dataset '{}' is empty!".format(dataset_name)
167
+
168
+ for source_id, (dataset_name, dicts) in \
169
+ enumerate(zip(dataset_names, dataset_dicts)):
170
+ assert len(dicts), "Dataset '{}' is empty!".format(dataset_name)
171
+ for d in dicts:
172
+ d['dataset_source'] = source_id # add "dataset_source" to original dict
173
+
174
+ if "annotations" in dicts[0]:
175
+ try:
176
+ class_names = MetadataCatalog.get(dataset_name).thing_classes
177
+ check_metadata_consistency("thing_classes", dataset_name)
178
+ print_instances_class_histogram(dicts, class_names)
179
+ except AttributeError: # class names are not available for this dataset
180
+ pass
181
+
182
+ assert proposal_files is None
183
+
184
+ dataset_dicts = list(itertools.chain.from_iterable(dataset_dicts)) # connect multiple iterable objects to one
185
+
186
+ has_instances = "annotations" in dataset_dicts[0]
187
+ if filter_empty and has_instances:
188
+ dataset_dicts = filter_images_with_only_crowd_annotations(dataset_dicts)
189
+ if min_keypoints > 0 and has_instances:
190
+ dataset_dicts = filter_images_with_few_keypoints(dataset_dicts, min_keypoints)
191
+
192
+ return dataset_dicts
193
+
194
+
195
+ class MultiDatasetSampler(Sampler):
196
+ def __init__(
197
+ self,
198
+ dataset_dicts,
199
+ dataset_ratio,
200
+ use_rfs, # [True, False]
201
+ dataset_ann,
202
+ repeat_threshold=0.001,
203
+ seed: Optional[int] = None,
204
+ ):
205
+ """
206
+ """
207
+ sizes = [0 for _ in range(len(dataset_ratio))]
208
+ for d in dataset_dicts:
209
+ sizes[d['dataset_source']] += 1 # size of each dataset
210
+ print('dataset sizes', sizes)
211
+ self.sizes = sizes
212
+ assert len(dataset_ratio) == len(sizes), \
213
+ 'length of dataset ratio {} should be equal to number if dataset {}'.format(
214
+ len(dataset_ratio), len(sizes)
215
+ )
216
+ if seed is None:
217
+ seed = comm.shared_random_seed() # seed shared across all GPUs
218
+ self._seed = int(seed)
219
+ self._rank = comm.get_rank()
220
+ self._world_size = comm.get_world_size()
221
+
222
+ self.dataset_ids = torch.tensor(
223
+ [d['dataset_source'] for d in dataset_dicts], dtype=torch.long)
224
+
225
+ dataset_weight = [torch.ones(s) * max(sizes) / s * r / sum(dataset_ratio) \
226
+ for i, (r, s) in enumerate(zip(dataset_ratio, sizes))]
227
+ dataset_weight = torch.cat(dataset_weight)
228
+
229
+ rfs_factors = []
230
+ st = 0
231
+ for i, s in enumerate(sizes):
232
+ if use_rfs[i]:
233
+ if dataset_ann[i] == 'box':
234
+ rfs_func = RepeatFactorTrainingSampler.repeat_factors_from_category_frequency
235
+ else:
236
+ rfs_func = repeat_factors_from_tag_frequency
237
+ rfs_factor = rfs_func(
238
+ dataset_dicts[st: st + s],
239
+ repeat_thresh=repeat_threshold)
240
+ rfs_factor = rfs_factor * (s / rfs_factor.sum())
241
+ else:
242
+ rfs_factor = torch.ones(s)
243
+ rfs_factors.append(rfs_factor)
244
+ st = st + s
245
+ rfs_factors = torch.cat(rfs_factors)
246
+
247
+ self.weights = dataset_weight * rfs_factors # weights for each element in the dataset_dict
248
+ self.sample_epoch_size = len(self.weights)
249
+
250
+ def __iter__(self):
251
+ start = self._rank
252
+ yield from itertools.islice(
253
+ self._infinite_indices(), start, None, self._world_size) # itertools.islice(iterable, start, stop[, step])
254
+
255
+
256
+ def _infinite_indices(self):
257
+ g = torch.Generator()
258
+ g.manual_seed(self._seed)
259
+ while True:
260
+ ids = torch.multinomial(
261
+ self.weights, self.sample_epoch_size, generator=g,
262
+ replacement=True) # randomly sample according to the given weights
263
+ nums = [(self.dataset_ids[ids] == i).sum().int().item() \
264
+ for i in range(len(self.sizes))]
265
+ yield from ids
266
+
267
+
268
+ class MDAspectRatioGroupedDataset(torch.utils.data.IterableDataset):
269
+ def __init__(self, dataset, batch_size, num_datasets):
270
+ """
271
+ """
272
+ self.dataset = dataset
273
+ self.batch_size = batch_size
274
+ self._buckets = [[] for _ in range(2 * num_datasets)] # there are (2 x num_datasets) types of data. For each dataset, there are two types: w>h or w<=h
275
+
276
+ def __iter__(self):
277
+ for d in self.dataset:
278
+ w, h = d["width"], d["height"]
279
+ aspect_ratio_bucket_id = 0 if w > h else 1
280
+ bucket_id = d['dataset_source'] * 2 + aspect_ratio_bucket_id
281
+ bucket = self._buckets[bucket_id]
282
+ bucket.append(d)
283
+ if len(bucket) == self.batch_size:
284
+ yield bucket[:]
285
+ del bucket[:]
286
+
287
+
288
+ class DIFFMDAspectRatioGroupedDataset(torch.utils.data.IterableDataset):
289
+ def __init__(self, dataset, batch_sizes, num_datasets):
290
+ """
291
+ """
292
+ self.dataset = dataset
293
+ self.batch_sizes = batch_sizes
294
+ self._buckets = [[] for _ in range(2 * num_datasets)]
295
+
296
+ def __iter__(self):
297
+ for d in self.dataset:
298
+ w, h = d["width"], d["height"]
299
+ aspect_ratio_bucket_id = 0 if w > h else 1
300
+ bucket_id = d['dataset_source'] * 2 + aspect_ratio_bucket_id
301
+ bucket = self._buckets[bucket_id]
302
+ bucket.append(d)
303
+ if len(bucket) == self.batch_sizes[d['dataset_source']]: # allow different batchsizes
304
+ yield bucket[:]
305
+ del bucket[:]
306
+
307
+
308
+ def repeat_factors_from_tag_frequency(dataset_dicts, repeat_thresh):
309
+ """
310
+ """
311
+ category_freq = defaultdict(int)
312
+ for dataset_dict in dataset_dicts:
313
+ cat_ids = dataset_dict['pos_category_ids']
314
+ for cat_id in cat_ids:
315
+ category_freq[cat_id] += 1
316
+ num_images = len(dataset_dicts)
317
+ for k, v in category_freq.items():
318
+ category_freq[k] = v / num_images
319
+
320
+ category_rep = {
321
+ cat_id: max(1.0, math.sqrt(repeat_thresh / cat_freq))
322
+ for cat_id, cat_freq in category_freq.items()
323
+ }
324
+
325
+ rep_factors = []
326
+ for dataset_dict in dataset_dicts:
327
+ cat_ids = dataset_dict['pos_category_ids']
328
+ rep_factor = max({category_rep[cat_id] for cat_id in cat_ids}, default=1.0)
329
+ rep_factors.append(rep_factor)
330
+
331
+ return torch.tensor(rep_factors, dtype=torch.float32)
regionspot/data/dataset_mapper.py ADDED
@@ -0,0 +1,140 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # ========================================
2
+ # Modified by Shoufa Chen
3
+ # ========================================
4
+ # Modified by Peize Sun, Rufeng Zhang
5
+ # Contact: {sunpeize, cxrfzhang}@foxmail.com
6
+ #
7
+ # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
8
+ import copy
9
+ import logging
10
+ import numpy as np
11
+ import torch
12
+ import os
13
+ from detectron2.data import detection_utils as utils
14
+ from detectron2.data import transforms as T
15
+
16
+
17
+ __all__ = ["RegionSpotDatasetMapper"]
18
+
19
+
20
+ def build_transform_gen(cfg, is_train):
21
+ """
22
+ Create a list of :class:`TransformGen` from config.
23
+ Returns:
24
+ list[TransformGen]
25
+ """
26
+ if is_train:
27
+ min_size = cfg.INPUT.MIN_SIZE_TRAIN
28
+ max_size = cfg.INPUT.MAX_SIZE_TRAIN
29
+ sample_style = cfg.INPUT.MIN_SIZE_TRAIN_SAMPLING
30
+ else:
31
+ min_size = cfg.INPUT.MIN_SIZE_TEST
32
+ max_size = cfg.INPUT.MAX_SIZE_TEST
33
+ sample_style = "choice"
34
+ if sample_style == "range":
35
+ assert len(min_size) == 2, "more than 2 ({}) min_size(s) are provided for ranges".format(len(min_size))
36
+
37
+ logger = logging.getLogger(__name__)
38
+ tfm_gens = []
39
+ if is_train:
40
+ tfm_gens.append(T.RandomFlip())
41
+ # ResizeShortestEdge
42
+ tfm_gens.append(T.ResizeShortestEdge(min_size, max_size, sample_style))
43
+
44
+ if is_train:
45
+ logger.info("TransformGens used in training: " + str(tfm_gens))
46
+ return tfm_gens
47
+
48
+
49
+ class RegionSpotDatasetMapper:
50
+ """
51
+ A callable which takes a dataset dict in Detectron2 Dataset format,
52
+ and map it into a format used by DiffusionDet.
53
+
54
+ The callable currently does the following:
55
+
56
+ 1. Read the image from "file_name"
57
+ 2. Applies geometric transforms to the image and annotation
58
+ 3. Find and applies suitable cropping to the image and annotation
59
+ 4. Prepare image and annotation to Tensors
60
+ """
61
+
62
+ def __init__(self, cfg, is_train=True):
63
+ if cfg.INPUT.CROP.ENABLED and is_train:
64
+ self.crop_gen = [
65
+ T.ResizeShortestEdge([400, 500, 600], sample_style="choice"),
66
+ T.RandomCrop(cfg.INPUT.CROP.TYPE, cfg.INPUT.CROP.SIZE),
67
+ ]
68
+ else:
69
+ self.crop_gen = None
70
+
71
+ self.tfm_gens = build_transform_gen(cfg, is_train)
72
+ logging.getLogger(__name__).info(
73
+ "Full TransformGens used in training: {}, crop: {}".format(str(self.tfm_gens), str(self.crop_gen))
74
+ )
75
+
76
+ self.img_format = cfg.INPUT.FORMAT
77
+ self.is_train = is_train
78
+ # if self.is_train:
79
+ # for dataset_name in cfg.DATASETS.TRAIN:
80
+ # if dataset_name.startswith("coco"):
81
+ self.mask_tokens_dir = os.path.join('./datasets/datasets_mask_tokens_vit_b/')
82
+
83
+ def __call__(self, dataset_dict):
84
+ """
85
+ Args:
86
+ dataset_dict (dict): Metadata of one image, in Detectron2 Dataset format.
87
+
88
+ Returns:
89
+ dict: a format that builtin models in detectron2 accept
90
+ """
91
+ dataset_dict = copy.deepcopy(dataset_dict) # it will be modified by code below
92
+ image = utils.read_image(dataset_dict["file_name"], format=self.img_format)
93
+ # utils.check_image_size(dataset_dict, image)
94
+ #
95
+ #get mask token and responsed label
96
+ image_id = dataset_dict["image_id"]
97
+ dataset_name = dataset_dict["file_name"].split('/')[1]
98
+ #datasets/coco/train2017/000000566174.jpg
99
+ #read pth
100
+ pth_file = os.path.join(self.mask_tokens_dir, os.path.join(dataset_name, str(image_id)+'.pth'))
101
+ offline_token = torch.load(pth_file)
102
+ #
103
+ if self.crop_gen is None:
104
+ image, transforms = T.apply_transform_gens(self.tfm_gens, image)
105
+ else:
106
+ if np.random.rand() > 0.5:
107
+ image, transforms = T.apply_transform_gens(self.tfm_gens, image)
108
+ else:
109
+ image, transforms = T.apply_transform_gens(
110
+ self.tfm_gens[:-1] + self.crop_gen + self.tfm_gens[-1:], image
111
+ )
112
+
113
+ image_shape = image.shape[:2] # h, w
114
+
115
+ # Pytorch's dataloader is efficient on torch.Tensor due to shared-memory,
116
+ # but not efficient on large generic data structures due to the use of pickle & mp.Queue.
117
+ # Therefore it's important to use torch.Tensor.
118
+ dataset_dict["image"] = torch.as_tensor(np.ascontiguousarray(image.transpose(2, 0, 1)))
119
+ dataset_dict["dataset_name"] = dataset_name
120
+ dataset_dict["extra_info"] = offline_token
121
+ if not self.is_train:
122
+ # USER: Modify this if you want to keep them for some reason.
123
+ dataset_dict.pop("annotations", None)
124
+ return dataset_dict
125
+
126
+ if "annotations" in dataset_dict:
127
+ # USER: Modify this if you want to keep them for some reason.
128
+ for anno in dataset_dict["annotations"]:
129
+ anno.pop("segmentation", None)
130
+ anno.pop("keypoints", None)
131
+
132
+ # USER: Implement additional transformations if you have other types of data
133
+ annos = [
134
+ utils.transform_instance_annotations(obj, transforms, image_shape)
135
+ for obj in dataset_dict.pop("annotations")
136
+ if obj.get("iscrowd", 0) == 0
137
+ ]
138
+ instances = utils.annotations_to_instances(annos, image_shape)
139
+ dataset_dict["instances"] = utils.filter_empty_instances(instances)
140
+ return dataset_dict
regionspot/data/objects365.py ADDED
@@ -0,0 +1,391 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from detectron2.data.datasets.register_coco import register_coco_instances
2
+ import os
3
+
4
+ categories = [
5
+ {'id': 164, 'name': 'cutting/chopping board'} ,
6
+ {'id': 49, 'name': 'tie'} ,
7
+ {'id': 306, 'name': 'crosswalk sign'} ,
8
+ {'id': 145, 'name': 'gun'} ,
9
+ {'id': 14, 'name': 'street lights'} ,
10
+ {'id': 223, 'name': 'bar soap'} ,
11
+ {'id': 74, 'name': 'wild bird'} ,
12
+ {'id': 219, 'name': 'ice cream'} ,
13
+ {'id': 37, 'name': 'stool'} ,
14
+ {'id': 25, 'name': 'storage box'} ,
15
+ {'id': 153, 'name': 'giraffe'} ,
16
+ {'id': 52, 'name': 'pen/pencil'} ,
17
+ {'id': 61, 'name': 'high heels'} ,
18
+ {'id': 340, 'name': 'mangosteen'} ,
19
+ {'id': 22, 'name': 'bracelet'} ,
20
+ {'id': 155, 'name': 'piano'} ,
21
+ {'id': 162, 'name': 'vent'} ,
22
+ {'id': 75, 'name': 'laptop'} ,
23
+ {'id': 236, 'name': 'toaster'} ,
24
+ {'id': 231, 'name': 'fire truck'} ,
25
+ {'id': 42, 'name': 'basket'} ,
26
+ {'id': 150, 'name': 'zebra'} ,
27
+ {'id': 124, 'name': 'head phone'} ,
28
+ {'id': 90, 'name': 'sheep'} ,
29
+ {'id': 322, 'name': 'steak'} ,
30
+ {'id': 39, 'name': 'couch'} ,
31
+ {'id': 209, 'name': 'toothbrush'} ,
32
+ {'id': 59, 'name': 'bicycle'} ,
33
+ {'id': 336, 'name': 'red cabbage'} ,
34
+ {'id': 228, 'name': 'golf ball'} ,
35
+ {'id': 120, 'name': 'tomato'} ,
36
+ {'id': 132, 'name': 'computer box'} ,
37
+ {'id': 8, 'name': 'cup'} ,
38
+ {'id': 183, 'name': 'basketball'} ,
39
+ {'id': 298, 'name': 'butterfly'} ,
40
+ {'id': 250, 'name': 'garlic'} ,
41
+ {'id': 12, 'name': 'desk'} ,
42
+ {'id': 141, 'name': 'microwave'} ,
43
+ {'id': 171, 'name': 'strawberry'} ,
44
+ {'id': 200, 'name': 'kettle'} ,
45
+ {'id': 63, 'name': 'van'} ,
46
+ {'id': 300, 'name': 'cheese'} ,
47
+ {'id': 215, 'name': 'marker'} ,
48
+ {'id': 100, 'name': 'blackboard/whiteboard'} ,
49
+ {'id': 186, 'name': 'printer'} ,
50
+ {'id': 333, 'name': 'bread/bun'} ,
51
+ {'id': 243, 'name': 'penguin'} ,
52
+ {'id': 364, 'name': 'iron'} ,
53
+ {'id': 180, 'name': 'ladder'} ,
54
+ {'id': 34, 'name': 'flag'} ,
55
+ {'id': 78, 'name': 'cell phone'} ,
56
+ {'id': 97, 'name': 'fan'} ,
57
+ {'id': 224, 'name': 'scale'} ,
58
+ {'id': 151, 'name': 'duck'} ,
59
+ {'id': 319, 'name': 'flute'} ,
60
+ {'id': 156, 'name': 'stop sign'} ,
61
+ {'id': 290, 'name': 'rickshaw'} ,
62
+ {'id': 128, 'name': 'sailboat'} ,
63
+ {'id': 165, 'name': 'tennis racket'} ,
64
+ {'id': 241, 'name': 'cigar'} ,
65
+ {'id': 101, 'name': 'balloon'} ,
66
+ {'id': 308, 'name': 'hair drier'} ,
67
+ {'id': 167, 'name': 'skating and skiing shoes'} ,
68
+ {'id': 237, 'name': 'helicopter'} ,
69
+ {'id': 65, 'name': 'sink'} ,
70
+ {'id': 129, 'name': 'tangerine'} ,
71
+ {'id': 330, 'name': 'crab'} ,
72
+ {'id': 320, 'name': 'measuring cup'} ,
73
+ {'id': 260, 'name': 'fishing rod'} ,
74
+ {'id': 346, 'name': 'saw'} ,
75
+ {'id': 216, 'name': 'ship'} ,
76
+ {'id': 46, 'name': 'coffee table'} ,
77
+ {'id': 194, 'name': 'facial mask'} ,
78
+ {'id': 281, 'name': 'stapler'} ,
79
+ {'id': 118, 'name': 'refrigerator'} ,
80
+ {'id': 40, 'name': 'belt'} ,
81
+ {'id': 349, 'name': 'starfish'} ,
82
+ {'id': 87, 'name': 'hanger'} ,
83
+ {'id': 116, 'name': 'baseball glove'} ,
84
+ {'id': 261, 'name': 'cherry'} ,
85
+ {'id': 334, 'name': 'baozi'} ,
86
+ {'id': 267, 'name': 'screwdriver'} ,
87
+ {'id': 158, 'name': 'converter'} ,
88
+ {'id': 335, 'name': 'lion'} ,
89
+ {'id': 170, 'name': 'baseball'} ,
90
+ {'id': 111, 'name': 'skis'} ,
91
+ {'id': 136, 'name': 'broccoli'} ,
92
+ {'id': 342, 'name': 'eraser'} ,
93
+ {'id': 337, 'name': 'polar bear'} ,
94
+ {'id': 139, 'name': 'shovel'} ,
95
+ {'id': 193, 'name': 'extension cord'} ,
96
+ {'id': 284, 'name': 'goldfish'} ,
97
+ {'id': 174, 'name': 'pepper'} ,
98
+ {'id': 138, 'name': 'stroller'} ,
99
+ {'id': 328, 'name': 'yak'} ,
100
+ {'id': 83, 'name': 'clock'} ,
101
+ {'id': 235, 'name': 'tricycle'} ,
102
+ {'id': 248, 'name': 'parking meter'} ,
103
+ {'id': 274, 'name': 'trophy'} ,
104
+ {'id': 324, 'name': 'binoculars'} ,
105
+ {'id': 51, 'name': 'traffic light'} ,
106
+ {'id': 314, 'name': 'donkey'} ,
107
+ {'id': 45, 'name': 'barrel/bucket'} ,
108
+ {'id': 292, 'name': 'pomegranate'} ,
109
+ {'id': 13, 'name': 'handbag'} ,
110
+ {'id': 262, 'name': 'tablet'} ,
111
+ {'id': 68, 'name': 'apple'} ,
112
+ {'id': 226, 'name': 'cabbage'} ,
113
+ {'id': 23, 'name': 'flower'} ,
114
+ {'id': 58, 'name': 'faucet'} ,
115
+ {'id': 206, 'name': 'tong'} ,
116
+ {'id': 291, 'name': 'trombone'} ,
117
+ {'id': 160, 'name': 'carrot'} ,
118
+ {'id': 172, 'name': 'bow tie'} ,
119
+ {'id': 122, 'name': 'tent'} ,
120
+ {'id': 163, 'name': 'cookies'} ,
121
+ {'id': 115, 'name': 'remote'} ,
122
+ {'id': 175, 'name': 'coffee machine'} ,
123
+ {'id': 238, 'name': 'green beans'} ,
124
+ {'id': 233, 'name': 'cello'} ,
125
+ {'id': 28, 'name': 'wine glass'} ,
126
+ {'id': 295, 'name': 'mushroom'} ,
127
+ {'id': 344, 'name': 'scallop'} ,
128
+ {'id': 125, 'name': 'lantern'} ,
129
+ {'id': 123, 'name': 'shampoo/shower gel'} ,
130
+ {'id': 285, 'name': 'meat balls'} ,
131
+ {'id': 266, 'name': 'key'} ,
132
+ {'id': 296, 'name': 'calculator'} ,
133
+ {'id': 168, 'name': 'scissors'} ,
134
+ {'id': 103, 'name': 'cymbal'} ,
135
+ {'id': 6, 'name': 'bottle'} ,
136
+ {'id': 264, 'name': 'nuts'} ,
137
+ {'id': 234, 'name': 'notepaper'} ,
138
+ {'id': 211, 'name': 'mango'} ,
139
+ {'id': 287, 'name': 'toothpaste'} ,
140
+ {'id': 196, 'name': 'chopsticks'} ,
141
+ {'id': 140, 'name': 'baseball bat'} ,
142
+ {'id': 244, 'name': 'hurdle'} ,
143
+ {'id': 195, 'name': 'tennis ball'} ,
144
+ {'id': 144, 'name': 'surveillance camera'} ,
145
+ {'id': 271, 'name': 'volleyball'} ,
146
+ {'id': 94, 'name': 'keyboard'} ,
147
+ {'id': 339, 'name': 'seal'} ,
148
+ {'id': 11, 'name': 'picture/frame'} ,
149
+ {'id': 348, 'name': 'okra'} ,
150
+ {'id': 191, 'name': 'sausage'} ,
151
+ {'id': 166, 'name': 'candy'} ,
152
+ {'id': 62, 'name': 'ring'} ,
153
+ {'id': 311, 'name': 'dolphin'} ,
154
+ {'id': 273, 'name': 'eggplant'} ,
155
+ {'id': 84, 'name': 'drum'} ,
156
+ {'id': 143, 'name': 'surfboard'} ,
157
+ {'id': 288, 'name': 'antelope'} ,
158
+ {'id': 204, 'name': 'clutch'} ,
159
+ {'id': 207, 'name': 'slide'} ,
160
+ {'id': 43, 'name': 'towel/napkin'} ,
161
+ {'id': 352, 'name': 'durian'} ,
162
+ {'id': 276, 'name': 'board eraser'} ,
163
+ {'id': 315, 'name': 'electric drill'} ,
164
+ {'id': 312, 'name': 'sushi'} ,
165
+ {'id': 198, 'name': 'pie'} ,
166
+ {'id': 106, 'name': 'pickup truck'} ,
167
+ {'id': 176, 'name': 'bathtub'} ,
168
+ {'id': 26, 'name': 'vase'} ,
169
+ {'id': 133, 'name': 'elephant'} ,
170
+ {'id': 256, 'name': 'sandwich'} ,
171
+ {'id': 327, 'name': 'noodles'} ,
172
+ {'id': 10, 'name': 'glasses'} ,
173
+ {'id': 109, 'name': 'airplane'} ,
174
+ {'id': 95, 'name': 'tripod'} ,
175
+ {'id': 247, 'name': 'CD'} ,
176
+ {'id': 121, 'name': 'machinery vehicle'} ,
177
+ {'id': 365, 'name': 'flashlight'} ,
178
+ {'id': 53, 'name': 'microphone'} ,
179
+ {'id': 270, 'name': 'pliers'} ,
180
+ {'id': 362, 'name': 'chainsaw'} ,
181
+ {'id': 259, 'name': 'bear'} ,
182
+ {'id': 197, 'name': 'electronic stove and gas stove'} ,
183
+ {'id': 89, 'name': 'pot/pan'} ,
184
+ {'id': 220, 'name': 'tape'} ,
185
+ {'id': 338, 'name': 'lighter'} ,
186
+ {'id': 177, 'name': 'snowboard'} ,
187
+ {'id': 214, 'name': 'violin'} ,
188
+ {'id': 217, 'name': 'chicken'} ,
189
+ {'id': 2, 'name': 'sneakers'} ,
190
+ {'id': 161, 'name': 'washing machine'} ,
191
+ {'id': 131, 'name': 'kite'} ,
192
+ {'id': 354, 'name': 'rabbit'} ,
193
+ {'id': 86, 'name': 'bus'} ,
194
+ {'id': 275, 'name': 'dates'} ,
195
+ {'id': 282, 'name': 'camel'} ,
196
+ {'id': 88, 'name': 'nightstand'} ,
197
+ {'id': 179, 'name': 'grapes'} ,
198
+ {'id': 229, 'name': 'pine apple'} ,
199
+ {'id': 56, 'name': 'necklace'} ,
200
+ {'id': 18, 'name': 'leather shoes'} ,
201
+ {'id': 358, 'name': 'hoverboard'} ,
202
+ {'id': 345, 'name': 'pencil case'} ,
203
+ {'id': 359, 'name': 'pasta'} ,
204
+ {'id': 157, 'name': 'radiator'} ,
205
+ {'id': 201, 'name': 'hamburger'} ,
206
+ {'id': 268, 'name': 'globe'} ,
207
+ {'id': 332, 'name': 'barbell'} ,
208
+ {'id': 329, 'name': 'mop'} ,
209
+ {'id': 252, 'name': 'horn'} ,
210
+ {'id': 350, 'name': 'eagle'} ,
211
+ {'id': 169, 'name': 'folder'} ,
212
+ {'id': 137, 'name': 'toilet'} ,
213
+ {'id': 5, 'name': 'lamp'} ,
214
+ {'id': 27, 'name': 'bench'} ,
215
+ {'id': 249, 'name': 'swan'} ,
216
+ {'id': 76, 'name': 'knife'} ,
217
+ {'id': 341, 'name': 'comb'} ,
218
+ {'id': 64, 'name': 'watch'} ,
219
+ {'id': 105, 'name': 'telephone'} ,
220
+ {'id': 3, 'name': 'chair'} ,
221
+ {'id': 33, 'name': 'boat'} ,
222
+ {'id': 107, 'name': 'orange'} ,
223
+ {'id': 60, 'name': 'bread'} ,
224
+ {'id': 147, 'name': 'cat'} ,
225
+ {'id': 135, 'name': 'gas stove'} ,
226
+ {'id': 307, 'name': 'papaya'} ,
227
+ {'id': 227, 'name': 'router/modem'} ,
228
+ {'id': 357, 'name': 'asparagus'} ,
229
+ {'id': 73, 'name': 'motorcycle'} ,
230
+ {'id': 77, 'name': 'traffic sign'} ,
231
+ {'id': 67, 'name': 'fish'} ,
232
+ {'id': 326, 'name': 'radish'} ,
233
+ {'id': 213, 'name': 'egg'} ,
234
+ {'id': 203, 'name': 'cucumber'} ,
235
+ {'id': 17, 'name': 'helmet'} ,
236
+ {'id': 110, 'name': 'luggage'} ,
237
+ {'id': 80, 'name': 'truck'} ,
238
+ {'id': 199, 'name': 'frisbee'} ,
239
+ {'id': 232, 'name': 'peach'} ,
240
+ {'id': 1, 'name': 'person'} ,
241
+ {'id': 29, 'name': 'boots'} ,
242
+ {'id': 310, 'name': 'chips'} ,
243
+ {'id': 142, 'name': 'skateboard'} ,
244
+ {'id': 44, 'name': 'slippers'} ,
245
+ {'id': 4, 'name': 'hat'} ,
246
+ {'id': 178, 'name': 'suitcase'} ,
247
+ {'id': 24, 'name': 'tv'} ,
248
+ {'id': 119, 'name': 'train'} ,
249
+ {'id': 82, 'name': 'power outlet'} ,
250
+ {'id': 245, 'name': 'swing'} ,
251
+ {'id': 15, 'name': 'book'} ,
252
+ {'id': 294, 'name': 'jellyfish'} ,
253
+ {'id': 192, 'name': 'fire extinguisher'} ,
254
+ {'id': 212, 'name': 'deer'} ,
255
+ {'id': 181, 'name': 'pear'} ,
256
+ {'id': 347, 'name': 'table tennis paddle'} ,
257
+ {'id': 113, 'name': 'trolley'} ,
258
+ {'id': 91, 'name': 'guitar'} ,
259
+ {'id': 202, 'name': 'golf club'} ,
260
+ {'id': 221, 'name': 'wheelchair'} ,
261
+ {'id': 254, 'name': 'saxophone'} ,
262
+ {'id': 117, 'name': 'paper towel'} ,
263
+ {'id': 303, 'name': 'race car'} ,
264
+ {'id': 240, 'name': 'carriage'} ,
265
+ {'id': 246, 'name': 'radio'} ,
266
+ {'id': 318, 'name': 'parrot'} ,
267
+ {'id': 251, 'name': 'french fries'} ,
268
+ {'id': 98, 'name': 'dog'} ,
269
+ {'id': 112, 'name': 'soccer'} ,
270
+ {'id': 355, 'name': 'french horn'} ,
271
+ {'id': 79, 'name': 'paddle'} ,
272
+ {'id': 283, 'name': 'lettuce'} ,
273
+ {'id': 9, 'name': 'car'} ,
274
+ {'id': 258, 'name': 'kiwi fruit'} ,
275
+ {'id': 325, 'name': 'llama'} ,
276
+ {'id': 187, 'name': 'billiards'} ,
277
+ {'id': 210, 'name': 'facial cleanser'} ,
278
+ {'id': 81, 'name': 'cow'} ,
279
+ {'id': 331, 'name': 'microscope'} ,
280
+ {'id': 148, 'name': 'lemon'} ,
281
+ {'id': 302, 'name': 'pomelo'} ,
282
+ {'id': 85, 'name': 'fork'} ,
283
+ {'id': 154, 'name': 'pumpkin'} ,
284
+ {'id': 289, 'name': 'shrimp'} ,
285
+ {'id': 71, 'name': 'teddy bear'} ,
286
+ {'id': 184, 'name': 'potato'} ,
287
+ {'id': 102, 'name': 'air conditioner'} ,
288
+ {'id': 208, 'name': 'hot dog'} ,
289
+ {'id': 222, 'name': 'plum'} ,
290
+ {'id': 316, 'name': 'spring rolls'} ,
291
+ {'id': 230, 'name': 'crane'} ,
292
+ {'id': 149, 'name': 'liquid soap'} ,
293
+ {'id': 55, 'name': 'canned'} ,
294
+ {'id': 35, 'name': 'speaker'} ,
295
+ {'id': 108, 'name': 'banana'} ,
296
+ {'id': 297, 'name': 'treadmill'} ,
297
+ {'id': 99, 'name': 'spoon'} ,
298
+ {'id': 104, 'name': 'mouse'} ,
299
+ {'id': 182, 'name': 'american football'} ,
300
+ {'id': 299, 'name': 'egg tart'} ,
301
+ {'id': 127, 'name': 'cleaning products'} ,
302
+ {'id': 313, 'name': 'urinal'} ,
303
+ {'id': 286, 'name': 'medal'} ,
304
+ {'id': 239, 'name': 'brush'} ,
305
+ {'id': 96, 'name': 'hockey'} ,
306
+ {'id': 279, 'name': 'dumbbell'} ,
307
+ {'id': 32, 'name': 'umbrella'} ,
308
+ {'id': 272, 'name': 'hammer'} ,
309
+ {'id': 16, 'name': 'plate'} ,
310
+ {'id': 21, 'name': 'potted plant'} ,
311
+ {'id': 242, 'name': 'earphone'} ,
312
+ {'id': 70, 'name': 'candle'} ,
313
+ {'id': 185, 'name': 'paint brush'} ,
314
+ {'id': 48, 'name': 'toy'} ,
315
+ {'id': 130, 'name': 'pizza'} ,
316
+ {'id': 255, 'name': 'trumpet'} ,
317
+ {'id': 361, 'name': 'hotair balloon'} ,
318
+ {'id': 188, 'name': 'fire hydrant'} ,
319
+ {'id': 50, 'name': 'bed'} ,
320
+ {'id': 253, 'name': 'avocado'} ,
321
+ {'id': 293, 'name': 'coconut'} ,
322
+ {'id': 257, 'name': 'cue'} ,
323
+ {'id': 280, 'name': 'hamimelon'} ,
324
+ {'id': 66, 'name': 'horse'} ,
325
+ {'id': 173, 'name': 'pigeon'} ,
326
+ {'id': 190, 'name': 'projector'} ,
327
+ {'id': 69, 'name': 'camera'} ,
328
+ {'id': 30, 'name': 'bowl'} ,
329
+ {'id': 269, 'name': 'broom'} ,
330
+ {'id': 343, 'name': 'pitaya'} ,
331
+ {'id': 305, 'name': 'tuba'} ,
332
+ {'id': 309, 'name': 'green onion'} ,
333
+ {'id': 363, 'name': 'lobster'} ,
334
+ {'id': 225, 'name': 'watermelon'} ,
335
+ {'id': 47, 'name': 'suv'} ,
336
+ {'id': 31, 'name': 'dining table'} ,
337
+ {'id': 54, 'name': 'sandals'} ,
338
+ {'id': 351, 'name': 'monkey'} ,
339
+ {'id': 218, 'name': 'onion'} ,
340
+ {'id': 36, 'name': 'trash bin/can'} ,
341
+ {'id': 20, 'name': 'glove'} ,
342
+ {'id': 277, 'name': 'rice'} ,
343
+ {'id': 152, 'name': 'sports car'} ,
344
+ {'id': 360, 'name': 'target'} ,
345
+ {'id': 205, 'name': 'blender'} ,
346
+ {'id': 19, 'name': 'pillow'} ,
347
+ {'id': 72, 'name': 'cake'} ,
348
+ {'id': 93, 'name': 'tea pot'} ,
349
+ {'id': 353, 'name': 'game board'} ,
350
+ {'id': 38, 'name': 'backpack'} ,
351
+ {'id': 356, 'name': 'ambulance'} ,
352
+ {'id': 146, 'name': 'life saver'} ,
353
+ {'id': 189, 'name': 'goose'} ,
354
+ {'id': 278, 'name': 'tape measure/ruler'} ,
355
+ {'id': 92, 'name': 'traffic cone'} ,
356
+ {'id': 134, 'name': 'toiletries'} ,
357
+ {'id': 114, 'name': 'oven'} ,
358
+ {'id': 317, 'name': 'tortoise/turtle'} ,
359
+ {'id': 265, 'name': 'corn'} ,
360
+ {'id': 126, 'name': 'donut'} ,
361
+ {'id': 57, 'name': 'mirror'} ,
362
+ {'id': 7, 'name': 'cabinet/shelf'} ,
363
+ {'id': 263, 'name': 'green vegetables'} ,
364
+ {'id': 159, 'name': 'tissue '} ,
365
+ {'id': 321, 'name': 'shark'} ,
366
+ {'id': 301, 'name': 'pig'} ,
367
+ {'id': 41, 'name': 'carpet'} ,
368
+ {'id': 304, 'name': 'rice cooker'} ,
369
+ {'id': 323, 'name': 'poker card'} ,
370
+ ]
371
+
372
+ def _get_builtin_metadata():
373
+ id_to_name = {x['id']: x['name'] for x in categories}
374
+ thing_dataset_id_to_contiguous_id = {i + 1: i for i in range(365)}
375
+ thing_classes = [id_to_name[k] for k in sorted(id_to_name)]
376
+ return {
377
+ "thing_dataset_id_to_contiguous_id": thing_dataset_id_to_contiguous_id,
378
+ "thing_classes": thing_classes}
379
+
380
+ _PREDEFINED_SPLITS_OBJECTS365 = {
381
+ "objects365_train": ("objects365/train", "objects365/objects365_train.json"),
382
+ "objects365_val": ("objects365/val", "objects365/objects365_val.json"),
383
+ }
384
+
385
+ for key, (image_root, json_file) in _PREDEFINED_SPLITS_OBJECTS365.items():
386
+ register_coco_instances(
387
+ key,
388
+ _get_builtin_metadata(),
389
+ os.path.join("datasets", json_file) if "://" not in json_file else json_file,
390
+ os.path.join("datasets", image_root),
391
+ )
regionspot/data/openimages.py ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from detectron2.data.datasets.register_coco import register_coco_instances
2
+ import os
3
+ from .openimages_categories import categories
4
+
5
+ def _get_builtin_metadata(categories):
6
+ id_to_name = {x['id']: x['name'] for x in categories}
7
+ thing_dataset_id_to_contiguous_id = {i + 1: i for i in range(len(categories))}
8
+ thing_classes = [id_to_name[k] for k in sorted(id_to_name)]
9
+
10
+ return {
11
+ "thing_dataset_id_to_contiguous_id": thing_dataset_id_to_contiguous_id,
12
+ "thing_classes": thing_classes}
13
+
14
+ def _get_builtin_metadata():
15
+ id_to_name = {x['id']: x['name'] for x in categories}
16
+ thing_dataset_id_to_contiguous_id = {i + 1: i for i in range(len(categories))}
17
+ thing_classes = [id_to_name[k] for k in sorted(id_to_name)]
18
+ return {
19
+ "thing_dataset_id_to_contiguous_id": thing_dataset_id_to_contiguous_id,
20
+ "thing_classes": thing_classes}
21
+
22
+
23
+ _PREDEFINED_SPLITS_OPENIMAGES = {
24
+ "openimages_train": ("openimages/detection/", "re_openimages_v6_train_bbox_splitdir_int_ids.json"),
25
+ "openimages_val": ("openimages/detection/", "re_openimages_v6_train_bbox_splitdir_int_ids.json"),
26
+ }
27
+
28
+ for key, (image_root, json_file) in _PREDEFINED_SPLITS_OPENIMAGES.items():
29
+ register_coco_instances(
30
+ key,
31
+ _get_builtin_metadata(),
32
+ os.path.join("datasets", json_file) if "://" not in json_file else json_file,
33
+ os.path.join("datasets", image_root),
34
+ )
regionspot/data/openimages_categories.py ADDED
@@ -0,0 +1 @@
 
 
1
+ categories = [{'id': 1, 'name': 'Tortoise', 'freebase_id': '/m/011k07'}, {'id': 2, 'name': 'Container', 'freebase_id': '/m/011q46kg'}, {'id': 3, 'name': 'Magpie', 'freebase_id': '/m/012074'}, {'id': 4, 'name': 'Sea turtle', 'freebase_id': '/m/0120dh'}, {'id': 5, 'name': 'Football', 'freebase_id': '/m/01226z'}, {'id': 6, 'name': 'Ambulance', 'freebase_id': '/m/012n7d'}, {'id': 7, 'name': 'Ladder', 'freebase_id': '/m/012w5l'}, {'id': 8, 'name': 'Toothbrush', 'freebase_id': '/m/012xff'}, {'id': 9, 'name': 'Syringe', 'freebase_id': '/m/012ysf'}, {'id': 10, 'name': 'Sink', 'freebase_id': '/m/0130jx'}, {'id': 11, 'name': 'Toy', 'freebase_id': '/m/0138tl'}, {'id': 12, 'name': 'Organ (Musical Instrument)', 'freebase_id': '/m/013y1f'}, {'id': 13, 'name': 'Cassette deck', 'freebase_id': '/m/01432t'}, {'id': 14, 'name': 'Apple', 'freebase_id': '/m/014j1m'}, {'id': 15, 'name': 'Human eye', 'freebase_id': '/m/014sv8'}, {'id': 16, 'name': 'Cosmetics', 'freebase_id': '/m/014trl'}, {'id': 17, 'name': 'Paddle', 'freebase_id': '/m/014y4n'}, {'id': 18, 'name': 'Snowman', 'freebase_id': '/m/0152hh'}, {'id': 19, 'name': 'Beer', 'freebase_id': '/m/01599'}, {'id': 20, 'name': 'Chopsticks', 'freebase_id': '/m/01_5g'}, {'id': 21, 'name': 'Human beard', 'freebase_id': '/m/015h_t'}, {'id': 22, 'name': 'Bird', 'freebase_id': '/m/015p6'}, {'id': 23, 'name': 'Parking meter', 'freebase_id': '/m/015qbp'}, {'id': 24, 'name': 'Traffic light', 'freebase_id': '/m/015qff'}, {'id': 25, 'name': 'Croissant', 'freebase_id': '/m/015wgc'}, {'id': 26, 'name': 'Cucumber', 'freebase_id': '/m/015x4r'}, {'id': 27, 'name': 'Radish', 'freebase_id': '/m/015x5n'}, {'id': 28, 'name': 'Towel', 'freebase_id': '/m/0162_1'}, {'id': 29, 'name': 'Doll', 'freebase_id': '/m/0167gd'}, {'id': 30, 'name': 'Skull', 'freebase_id': '/m/016m2d'}, {'id': 31, 'name': 'Washing machine', 'freebase_id': '/m/0174k2'}, {'id': 32, 'name': 'Glove', 'freebase_id': '/m/0174n1'}, {'id': 33, 'name': 'Tick', 'freebase_id': '/m/0175cv'}, {'id': 34, 'name': 'Belt', 'freebase_id': '/m/0176mf'}, {'id': 35, 'name': 'Sunglasses', 'freebase_id': '/m/017ftj'}, {'id': 36, 'name': 'Banjo', 'freebase_id': '/m/018j2'}, {'id': 37, 'name': 'Cart', 'freebase_id': '/m/018p4k'}, {'id': 38, 'name': 'Ball', 'freebase_id': '/m/018xm'}, {'id': 39, 'name': 'Backpack', 'freebase_id': '/m/01940j'}, {'id': 40, 'name': 'Bicycle', 'freebase_id': '/m/0199g'}, {'id': 41, 'name': 'Home appliance', 'freebase_id': '/m/019dx1'}, {'id': 42, 'name': 'Centipede', 'freebase_id': '/m/019h78'}, {'id': 43, 'name': 'Boat', 'freebase_id': '/m/019jd'}, {'id': 44, 'name': 'Surfboard', 'freebase_id': '/m/019w40'}, {'id': 45, 'name': 'Boot', 'freebase_id': '/m/01b638'}, {'id': 46, 'name': 'Headphones', 'freebase_id': '/m/01b7fy'}, {'id': 47, 'name': 'Hot dog', 'freebase_id': '/m/01b9xk'}, {'id': 48, 'name': 'Shorts', 'freebase_id': '/m/01bfm9'}, {'id': 49, 'name': 'Fast food', 'freebase_id': '/m/01_bhs'}, {'id': 50, 'name': 'Bus', 'freebase_id': '/m/01bjv'}, {'id': 51, 'name': 'Boy', 'freebase_id': '/m/01bl7v'}, {'id': 52, 'name': 'Screwdriver', 'freebase_id': '/m/01bms0'}, {'id': 53, 'name': 'Bicycle wheel', 'freebase_id': '/m/01bqk0'}, {'id': 54, 'name': 'Barge', 'freebase_id': '/m/01btn'}, {'id': 55, 'name': 'Laptop', 'freebase_id': '/m/01c648'}, {'id': 56, 'name': 'Miniskirt', 'freebase_id': '/m/01cmb2'}, {'id': 57, 'name': 'Drill (Tool)', 'freebase_id': '/m/01d380'}, {'id': 58, 'name': 'Dress', 'freebase_id': '/m/01d40f'}, {'id': 59, 'name': 'Bear', 'freebase_id': '/m/01dws'}, {'id': 60, 'name': 'Waffle', 'freebase_id': '/m/01dwsz'}, {'id': 61, 'name': 'Pancake', 'freebase_id': '/m/01dwwc'}, {'id': 62, 'name': 'Brown bear', 'freebase_id': '/m/01dxs'}, {'id': 63, 'name': 'Woodpecker', 'freebase_id': '/m/01dy8n'}, {'id': 64, 'name': 'Blue jay', 'freebase_id': '/m/01f8m5'}, {'id': 65, 'name': 'Pretzel', 'freebase_id': '/m/01f91_'}, {'id': 66, 'name': 'Bagel', 'freebase_id': '/m/01fb_0'}, {'id': 67, 'name': 'Tower', 'freebase_id': '/m/01fdzj'}, {'id': 68, 'name': 'Teapot', 'freebase_id': '/m/01fh4r'}, {'id': 69, 'name': 'Person', 'freebase_id': '/m/01g317'}, {'id': 70, 'name': 'Bow and arrow', 'freebase_id': '/m/01g3x7'}, {'id': 71, 'name': 'Swimwear', 'freebase_id': '/m/01gkx_'}, {'id': 72, 'name': 'Beehive', 'freebase_id': '/m/01gllr'}, {'id': 73, 'name': 'Brassiere', 'freebase_id': '/m/01gmv2'}, {'id': 74, 'name': 'Bee', 'freebase_id': '/m/01h3n'}, {'id': 75, 'name': 'Bat (Animal)', 'freebase_id': '/m/01h44'}, {'id': 76, 'name': 'Starfish', 'freebase_id': '/m/01h8tj'}, {'id': 77, 'name': 'Popcorn', 'freebase_id': '/m/01hrv5'}, {'id': 78, 'name': 'Burrito', 'freebase_id': '/m/01j3zr'}, {'id': 79, 'name': 'Chainsaw', 'freebase_id': '/m/01j4z9'}, {'id': 80, 'name': 'Balloon', 'freebase_id': '/m/01j51'}, {'id': 81, 'name': 'Wrench', 'freebase_id': '/m/01j5ks'}, {'id': 82, 'name': 'Tent', 'freebase_id': '/m/01j61q'}, {'id': 83, 'name': 'Vehicle registration plate', 'freebase_id': '/m/01jfm_'}, {'id': 84, 'name': 'Lantern', 'freebase_id': '/m/01jfsr'}, {'id': 85, 'name': 'Toaster', 'freebase_id': '/m/01k6s3'}, {'id': 86, 'name': 'Flashlight', 'freebase_id': '/m/01kb5b'}, {'id': 87, 'name': 'Billboard', 'freebase_id': '/m/01knjb'}, {'id': 88, 'name': 'Tiara', 'freebase_id': '/m/01krhy'}, {'id': 89, 'name': 'Limousine', 'freebase_id': '/m/01lcw4'}, {'id': 90, 'name': 'Necklace', 'freebase_id': '/m/01llwg'}, {'id': 91, 'name': 'Carnivore', 'freebase_id': '/m/01lrl'}, {'id': 92, 'name': 'Scissors', 'freebase_id': '/m/01lsmm'}, {'id': 93, 'name': 'Stairs', 'freebase_id': '/m/01lynh'}, {'id': 94, 'name': 'Computer keyboard', 'freebase_id': '/m/01m2v'}, {'id': 95, 'name': 'Printer', 'freebase_id': '/m/01m4t'}, {'id': 96, 'name': 'Traffic sign', 'freebase_id': '/m/01mqdt'}, {'id': 97, 'name': 'Chair', 'freebase_id': '/m/01mzpv'}, {'id': 98, 'name': 'Shirt', 'freebase_id': '/m/01n4qj'}, {'id': 99, 'name': 'Poster', 'freebase_id': '/m/01n5jq'}, {'id': 100, 'name': 'Cheese', 'freebase_id': '/m/01nkt'}, {'id': 101, 'name': 'Sock', 'freebase_id': '/m/01nq26'}, {'id': 102, 'name': 'Fire hydrant', 'freebase_id': '/m/01pns0'}, {'id': 103, 'name': 'Land vehicle', 'freebase_id': '/m/01prls'}, {'id': 104, 'name': 'Earrings', 'freebase_id': '/m/01r546'}, {'id': 105, 'name': 'Tie', 'freebase_id': '/m/01rkbr'}, {'id': 106, 'name': 'Watercraft', 'freebase_id': '/m/01rzcn'}, {'id': 107, 'name': 'Cabinetry', 'freebase_id': '/m/01s105'}, {'id': 108, 'name': 'Suitcase', 'freebase_id': '/m/01s55n'}, {'id': 109, 'name': 'Muffin', 'freebase_id': '/m/01tcjp'}, {'id': 110, 'name': 'Bidet', 'freebase_id': '/m/01vbnl'}, {'id': 111, 'name': 'Snack', 'freebase_id': '/m/01ww8y'}, {'id': 112, 'name': 'Snowmobile', 'freebase_id': '/m/01x3jk'}, {'id': 113, 'name': 'Clock', 'freebase_id': '/m/01x3z'}, {'id': 114, 'name': 'Medical equipment', 'freebase_id': '/m/01xgg_'}, {'id': 115, 'name': 'Cattle', 'freebase_id': '/m/01xq0k1'}, {'id': 116, 'name': 'Cello', 'freebase_id': '/m/01xqw'}, {'id': 117, 'name': 'Jet ski', 'freebase_id': '/m/01xs3r'}, {'id': 118, 'name': 'Camel', 'freebase_id': '/m/01x_v'}, {'id': 119, 'name': 'Coat', 'freebase_id': '/m/01xygc'}, {'id': 120, 'name': 'Suit', 'freebase_id': '/m/01xyhv'}, {'id': 121, 'name': 'Desk', 'freebase_id': '/m/01y9k5'}, {'id': 122, 'name': 'Cat', 'freebase_id': '/m/01yrx'}, {'id': 123, 'name': 'Bronze sculpture', 'freebase_id': '/m/01yx86'}, {'id': 124, 'name': 'Juice', 'freebase_id': '/m/01z1kdw'}, {'id': 125, 'name': 'Gondola', 'freebase_id': '/m/02068x'}, {'id': 126, 'name': 'Beetle', 'freebase_id': '/m/020jm'}, {'id': 127, 'name': 'Cannon', 'freebase_id': '/m/020kz'}, {'id': 128, 'name': 'Computer mouse', 'freebase_id': '/m/020lf'}, {'id': 129, 'name': 'Cookie', 'freebase_id': '/m/021mn'}, {'id': 130, 'name': 'Office building', 'freebase_id': '/m/021sj1'}, {'id': 131, 'name': 'Fountain', 'freebase_id': '/m/0220r2'}, {'id': 132, 'name': 'Coin', 'freebase_id': '/m/0242l'}, {'id': 133, 'name': 'Calculator', 'freebase_id': '/m/024d2'}, {'id': 134, 'name': 'Cocktail', 'freebase_id': '/m/024g6'}, {'id': 135, 'name': 'Computer monitor', 'freebase_id': '/m/02522'}, {'id': 136, 'name': 'Box', 'freebase_id': '/m/025dyy'}, {'id': 137, 'name': 'Stapler', 'freebase_id': '/m/025fsf'}, {'id': 138, 'name': 'Christmas tree', 'freebase_id': '/m/025nd'}, {'id': 139, 'name': 'Cowboy hat', 'freebase_id': '/m/025rp__'}, {'id': 140, 'name': 'Hiking equipment', 'freebase_id': '/m/0268lbt'}, {'id': 141, 'name': 'Studio couch', 'freebase_id': '/m/026qbn5'}, {'id': 142, 'name': 'Drum', 'freebase_id': '/m/026t6'}, {'id': 143, 'name': 'Dessert', 'freebase_id': '/m/0270h'}, {'id': 144, 'name': 'Wine rack', 'freebase_id': '/m/0271qf7'}, {'id': 145, 'name': 'Drink', 'freebase_id': '/m/0271t'}, {'id': 146, 'name': 'Zucchini', 'freebase_id': '/m/027pcv'}, {'id': 147, 'name': 'Ladle', 'freebase_id': '/m/027rl48'}, {'id': 148, 'name': 'Human mouth', 'freebase_id': '/m/0283dt1'}, {'id': 149, 'name': 'Dairy Product', 'freebase_id': '/m/0284d'}, {'id': 150, 'name': 'Dice', 'freebase_id': '/m/029b3'}, {'id': 151, 'name': 'Oven', 'freebase_id': '/m/029bxz'}, {'id': 152, 'name': 'Dinosaur', 'freebase_id': '/m/029tx'}, {'id': 153, 'name': 'Ratchet (Device)', 'freebase_id': '/m/02bm9n'}, {'id': 154, 'name': 'Couch', 'freebase_id': '/m/02crq1'}, {'id': 155, 'name': 'Cricket ball', 'freebase_id': '/m/02ctlc'}, {'id': 156, 'name': 'Winter melon', 'freebase_id': '/m/02cvgx'}, {'id': 157, 'name': 'Spatula', 'freebase_id': '/m/02d1br'}, {'id': 158, 'name': 'Whiteboard', 'freebase_id': '/m/02d9qx'}, {'id': 159, 'name': 'Pencil sharpener', 'freebase_id': '/m/02ddwp'}, {'id': 160, 'name': 'Door', 'freebase_id': '/m/02dgv'}, {'id': 161, 'name': 'Hat', 'freebase_id': '/m/02dl1y'}, {'id': 162, 'name': 'Shower', 'freebase_id': '/m/02f9f_'}, {'id': 163, 'name': 'Eraser', 'freebase_id': '/m/02fh7f'}, {'id': 164, 'name': 'Fedora', 'freebase_id': '/m/02fq_6'}, {'id': 165, 'name': 'Guacamole', 'freebase_id': '/m/02g30s'}, {'id': 166, 'name': 'Dagger', 'freebase_id': '/m/02gzp'}, {'id': 167, 'name': 'Scarf', 'freebase_id': '/m/02h19r'}, {'id': 168, 'name': 'Dolphin', 'freebase_id': '/m/02hj4'}, {'id': 169, 'name': 'Sombrero', 'freebase_id': '/m/02jfl0'}, {'id': 170, 'name': 'Tin can', 'freebase_id': '/m/02jnhm'}, {'id': 171, 'name': 'Mug', 'freebase_id': '/m/02jvh9'}, {'id': 172, 'name': 'Tap', 'freebase_id': '/m/02jz0l'}, {'id': 173, 'name': 'Harbor seal', 'freebase_id': '/m/02l8p9'}, {'id': 174, 'name': 'Stretcher', 'freebase_id': '/m/02lbcq'}, {'id': 175, 'name': 'Can opener', 'freebase_id': '/m/02mqfb'}, {'id': 176, 'name': 'Goggles', 'freebase_id': '/m/02_n6y'}, {'id': 177, 'name': 'Human body', 'freebase_id': '/m/02p0tk3'}, {'id': 178, 'name': 'Roller skates', 'freebase_id': '/m/02p3w7d'}, {'id': 179, 'name': 'Coffee cup', 'freebase_id': '/m/02p5f1q'}, {'id': 180, 'name': 'Cutting board', 'freebase_id': '/m/02pdsw'}, {'id': 181, 'name': 'Blender', 'freebase_id': '/m/02pjr4'}, {'id': 182, 'name': 'Plumbing fixture', 'freebase_id': '/m/02pkr5'}, {'id': 183, 'name': 'Stop sign', 'freebase_id': '/m/02pv19'}, {'id': 184, 'name': 'Office supplies', 'freebase_id': '/m/02rdsp'}, {'id': 185, 'name': 'Volleyball (Ball)', 'freebase_id': '/m/02rgn06'}, {'id': 186, 'name': 'Vase', 'freebase_id': '/m/02s195'}, {'id': 187, 'name': 'Slow cooker', 'freebase_id': '/m/02tsc9'}, {'id': 188, 'name': 'Wardrobe', 'freebase_id': '/m/02vkqh8'}, {'id': 189, 'name': 'Coffee', 'freebase_id': '/m/02vqfm'}, {'id': 190, 'name': 'Whisk', 'freebase_id': '/m/02vwcm'}, {'id': 191, 'name': 'Paper towel', 'freebase_id': '/m/02w3r3'}, {'id': 192, 'name': 'Personal care', 'freebase_id': '/m/02w3_ws'}, {'id': 193, 'name': 'Food', 'freebase_id': '/m/02wbm'}, {'id': 194, 'name': 'Sun hat', 'freebase_id': '/m/02wbtzl'}, {'id': 195, 'name': 'Tree house', 'freebase_id': '/m/02wg_p'}, {'id': 196, 'name': 'Flying disc', 'freebase_id': '/m/02wmf'}, {'id': 197, 'name': 'Skirt', 'freebase_id': '/m/02wv6h6'}, {'id': 198, 'name': 'Gas stove', 'freebase_id': '/m/02wv84t'}, {'id': 199, 'name': 'Salt and pepper shakers', 'freebase_id': '/m/02x8cch'}, {'id': 200, 'name': 'Mechanical fan', 'freebase_id': '/m/02x984l'}, {'id': 201, 'name': 'Face powder', 'freebase_id': '/m/02xb7qb'}, {'id': 202, 'name': 'Fax', 'freebase_id': '/m/02xqq'}, {'id': 203, 'name': 'Fruit', 'freebase_id': '/m/02xwb'}, {'id': 204, 'name': 'French fries', 'freebase_id': '/m/02y6n'}, {'id': 205, 'name': 'Nightstand', 'freebase_id': '/m/02z51p'}, {'id': 206, 'name': 'Barrel', 'freebase_id': '/m/02zn6n'}, {'id': 207, 'name': 'Kite', 'freebase_id': '/m/02zt3'}, {'id': 208, 'name': 'Tart', 'freebase_id': '/m/02zvsm'}, {'id': 209, 'name': 'Treadmill', 'freebase_id': '/m/030610'}, {'id': 210, 'name': 'Fox', 'freebase_id': '/m/0306r'}, {'id': 211, 'name': 'Flag', 'freebase_id': '/m/03120'}, {'id': 212, 'name': 'French horn', 'freebase_id': '/m/0319l'}, {'id': 213, 'name': 'Window blind', 'freebase_id': '/m/031b6r'}, {'id': 214, 'name': 'Human foot', 'freebase_id': '/m/031n1'}, {'id': 215, 'name': 'Golf cart', 'freebase_id': '/m/0323sq'}, {'id': 216, 'name': 'Jacket', 'freebase_id': '/m/032b3c'}, {'id': 217, 'name': 'Egg (Food)', 'freebase_id': '/m/033cnk'}, {'id': 218, 'name': 'Street light', 'freebase_id': '/m/033rq4'}, {'id': 219, 'name': 'Guitar', 'freebase_id': '/m/0342h'}, {'id': 220, 'name': 'Pillow', 'freebase_id': '/m/034c16'}, {'id': 221, 'name': 'Human leg', 'freebase_id': '/m/035r7c'}, {'id': 222, 'name': 'Isopod', 'freebase_id': '/m/035vxb'}, {'id': 223, 'name': 'Grape', 'freebase_id': '/m/0388q'}, {'id': 224, 'name': 'Human ear', 'freebase_id': '/m/039xj_'}, {'id': 225, 'name': 'Power plugs and sockets', 'freebase_id': '/m/03bbps'}, {'id': 226, 'name': 'Panda', 'freebase_id': '/m/03bj1'}, {'id': 227, 'name': 'Giraffe', 'freebase_id': '/m/03bk1'}, {'id': 228, 'name': 'Woman', 'freebase_id': '/m/03bt1vf'}, {'id': 229, 'name': 'Door handle', 'freebase_id': '/m/03c7gz'}, {'id': 230, 'name': 'Rhinoceros', 'freebase_id': '/m/03d443'}, {'id': 231, 'name': 'Bathtub', 'freebase_id': '/m/03dnzn'}, {'id': 232, 'name': 'Goldfish', 'freebase_id': '/m/03fj2'}, {'id': 233, 'name': 'Houseplant', 'freebase_id': '/m/03fp41'}, {'id': 234, 'name': 'Goat', 'freebase_id': '/m/03fwl'}, {'id': 235, 'name': 'Baseball bat', 'freebase_id': '/m/03g8mr'}, {'id': 236, 'name': 'Baseball glove', 'freebase_id': '/m/03grzl'}, {'id': 237, 'name': 'Mixing bowl', 'freebase_id': '/m/03hj559'}, {'id': 238, 'name': 'Marine invertebrates', 'freebase_id': '/m/03hl4l9'}, {'id': 239, 'name': 'Kitchen utensil', 'freebase_id': '/m/03hlz0c'}, {'id': 240, 'name': 'Light switch', 'freebase_id': '/m/03jbxj'}, {'id': 241, 'name': 'House', 'freebase_id': '/m/03jm5'}, {'id': 242, 'name': 'Horse', 'freebase_id': '/m/03k3r'}, {'id': 243, 'name': 'Stationary bicycle', 'freebase_id': '/m/03kt2w'}, {'id': 244, 'name': 'Hammer', 'freebase_id': '/m/03l9g'}, {'id': 245, 'name': 'Ceiling fan', 'freebase_id': '/m/03ldnb'}, {'id': 246, 'name': 'Sofa bed', 'freebase_id': '/m/03m3pdh'}, {'id': 247, 'name': 'Adhesive tape', 'freebase_id': '/m/03m3vtv'}, {'id': 248, 'name': 'Harp', 'freebase_id': '/m/03m5k'}, {'id': 249, 'name': 'Sandal', 'freebase_id': '/m/03nfch'}, {'id': 250, 'name': 'Bicycle helmet', 'freebase_id': '/m/03p3bw'}, {'id': 251, 'name': 'Saucer', 'freebase_id': '/m/03q5c7'}, {'id': 252, 'name': 'Harpsichord', 'freebase_id': '/m/03q5t'}, {'id': 253, 'name': 'Human hair', 'freebase_id': '/m/03q69'}, {'id': 254, 'name': 'Heater', 'freebase_id': '/m/03qhv5'}, {'id': 255, 'name': 'Harmonica', 'freebase_id': '/m/03qjg'}, {'id': 256, 'name': 'Hamster', 'freebase_id': '/m/03qrc'}, {'id': 257, 'name': 'Curtain', 'freebase_id': '/m/03rszm'}, {'id': 258, 'name': 'Bed', 'freebase_id': '/m/03ssj5'}, {'id': 259, 'name': 'Kettle', 'freebase_id': '/m/03s_tn'}, {'id': 260, 'name': 'Fireplace', 'freebase_id': '/m/03tw93'}, {'id': 261, 'name': 'Scale', 'freebase_id': '/m/03txqz'}, {'id': 262, 'name': 'Drinking straw', 'freebase_id': '/m/03v5tg'}, {'id': 263, 'name': 'Insect', 'freebase_id': '/m/03vt0'}, {'id': 264, 'name': 'Hair dryer', 'freebase_id': '/m/03wvsk'}, {'id': 265, 'name': 'Kitchenware', 'freebase_id': '/m/03_wxk'}, {'id': 266, 'name': 'Indoor rower', 'freebase_id': '/m/03wym'}, {'id': 267, 'name': 'Invertebrate', 'freebase_id': '/m/03xxp'}, {'id': 268, 'name': 'Food processor', 'freebase_id': '/m/03y6mg'}, {'id': 269, 'name': 'Bookcase', 'freebase_id': '/m/03__z0'}, {'id': 270, 'name': 'Refrigerator', 'freebase_id': '/m/040b_t'}, {'id': 271, 'name': 'Wood-burning stove', 'freebase_id': '/m/04169hn'}, {'id': 272, 'name': 'Punching bag', 'freebase_id': '/m/0420v5'}, {'id': 273, 'name': 'Common fig', 'freebase_id': '/m/043nyj'}, {'id': 274, 'name': 'Cocktail shaker', 'freebase_id': '/m/0440zs'}, {'id': 275, 'name': 'Jaguar (Animal)', 'freebase_id': '/m/0449p'}, {'id': 276, 'name': 'Golf ball', 'freebase_id': '/m/044r5d'}, {'id': 277, 'name': 'Fashion accessory', 'freebase_id': '/m/0463sg'}, {'id': 278, 'name': 'Alarm clock', 'freebase_id': '/m/046dlr'}, {'id': 279, 'name': 'Filing cabinet', 'freebase_id': '/m/047j0r'}, {'id': 280, 'name': 'Artichoke', 'freebase_id': '/m/047v4b'}, {'id': 281, 'name': 'Table', 'freebase_id': '/m/04bcr3'}, {'id': 282, 'name': 'Tableware', 'freebase_id': '/m/04brg2'}, {'id': 283, 'name': 'Kangaroo', 'freebase_id': '/m/04c0y'}, {'id': 284, 'name': 'Koala', 'freebase_id': '/m/04cp_'}, {'id': 285, 'name': 'Knife', 'freebase_id': '/m/04ctx'}, {'id': 286, 'name': 'Bottle', 'freebase_id': '/m/04dr76w'}, {'id': 287, 'name': 'Bottle opener', 'freebase_id': '/m/04f5ws'}, {'id': 288, 'name': 'Lynx', 'freebase_id': '/m/04g2r'}, {'id': 289, 'name': 'Lavender (Plant)', 'freebase_id': '/m/04gth'}, {'id': 290, 'name': 'Lighthouse', 'freebase_id': '/m/04h7h'}, {'id': 291, 'name': 'Dumbbell', 'freebase_id': '/m/04h8sr'}, {'id': 292, 'name': 'Human head', 'freebase_id': '/m/04hgtk'}, {'id': 293, 'name': 'Bowl', 'freebase_id': '/m/04kkgm'}, {'id': 294, 'name': 'Humidifier', 'freebase_id': '/m/04lvq_'}, {'id': 295, 'name': 'Porch', 'freebase_id': '/m/04m6gz'}, {'id': 296, 'name': 'Lizard', 'freebase_id': '/m/04m9y'}, {'id': 297, 'name': 'Billiard table', 'freebase_id': '/m/04p0qw'}, {'id': 298, 'name': 'Mammal', 'freebase_id': '/m/04rky'}, {'id': 299, 'name': 'Mouse', 'freebase_id': '/m/04rmv'}, {'id': 300, 'name': 'Motorcycle', 'freebase_id': '/m/04_sv'}, {'id': 301, 'name': 'Musical instrument', 'freebase_id': '/m/04szw'}, {'id': 302, 'name': 'Swim cap', 'freebase_id': '/m/04tn4x'}, {'id': 303, 'name': 'Frying pan', 'freebase_id': '/m/04v6l4'}, {'id': 304, 'name': 'Snowplow', 'freebase_id': '/m/04vv5k'}, {'id': 305, 'name': 'Bathroom cabinet', 'freebase_id': '/m/04y4h8h'}, {'id': 306, 'name': 'Missile', 'freebase_id': '/m/04ylt'}, {'id': 307, 'name': 'Bust', 'freebase_id': '/m/04yqq2'}, {'id': 308, 'name': 'Man', 'freebase_id': '/m/04yx4'}, {'id': 309, 'name': 'Waffle iron', 'freebase_id': '/m/04z4wx'}, {'id': 310, 'name': 'Milk', 'freebase_id': '/m/04zpv'}, {'id': 311, 'name': 'Ring binder', 'freebase_id': '/m/04zwwv'}, {'id': 312, 'name': 'Plate', 'freebase_id': '/m/050gv4'}, {'id': 313, 'name': 'Mobile phone', 'freebase_id': '/m/050k8'}, {'id': 314, 'name': 'Baked goods', 'freebase_id': '/m/052lwg6'}, {'id': 315, 'name': 'Mushroom', 'freebase_id': '/m/052sf'}, {'id': 316, 'name': 'Crutch', 'freebase_id': '/m/05441v'}, {'id': 317, 'name': 'Pitcher (Container)', 'freebase_id': '/m/054fyh'}, {'id': 318, 'name': 'Mirror', 'freebase_id': '/m/054_l'}, {'id': 319, 'name': 'Personal flotation device', 'freebase_id': '/m/054xkw'}, {'id': 320, 'name': 'Table tennis racket', 'freebase_id': '/m/05_5p_0'}, {'id': 321, 'name': 'Pencil case', 'freebase_id': '/m/05676x'}, {'id': 322, 'name': 'Musical keyboard', 'freebase_id': '/m/057cc'}, {'id': 323, 'name': 'Scoreboard', 'freebase_id': '/m/057p5t'}, {'id': 324, 'name': 'Briefcase', 'freebase_id': '/m/0584n8'}, {'id': 325, 'name': 'Kitchen knife', 'freebase_id': '/m/058qzx'}, {'id': 326, 'name': 'Nail (Construction)', 'freebase_id': '/m/05bm6'}, {'id': 327, 'name': 'Tennis ball', 'freebase_id': '/m/05ctyq'}, {'id': 328, 'name': 'Plastic bag', 'freebase_id': '/m/05gqfk'}, {'id': 329, 'name': 'Oboe', 'freebase_id': '/m/05kms'}, {'id': 330, 'name': 'Chest of drawers', 'freebase_id': '/m/05kyg_'}, {'id': 331, 'name': 'Ostrich', 'freebase_id': '/m/05n4y'}, {'id': 332, 'name': 'Piano', 'freebase_id': '/m/05r5c'}, {'id': 333, 'name': 'Girl', 'freebase_id': '/m/05r655'}, {'id': 334, 'name': 'Plant', 'freebase_id': '/m/05s2s'}, {'id': 335, 'name': 'Potato', 'freebase_id': '/m/05vtc'}, {'id': 336, 'name': 'Hair spray', 'freebase_id': '/m/05w9t9'}, {'id': 337, 'name': 'Sports equipment', 'freebase_id': '/m/05y5lj'}, {'id': 338, 'name': 'Pasta', 'freebase_id': '/m/05z55'}, {'id': 339, 'name': 'Penguin', 'freebase_id': '/m/05z6w'}, {'id': 340, 'name': 'Pumpkin', 'freebase_id': '/m/05zsy'}, {'id': 341, 'name': 'Pear', 'freebase_id': '/m/061_f'}, {'id': 342, 'name': 'Infant bed', 'freebase_id': '/m/061hd_'}, {'id': 343, 'name': 'Polar bear', 'freebase_id': '/m/0633h'}, {'id': 344, 'name': 'Mixer', 'freebase_id': '/m/063rgb'}, {'id': 345, 'name': 'Cupboard', 'freebase_id': '/m/0642b4'}, {'id': 346, 'name': 'Jacuzzi', 'freebase_id': '/m/065h6l'}, {'id': 347, 'name': 'Pizza', 'freebase_id': '/m/0663v'}, {'id': 348, 'name': 'Digital clock', 'freebase_id': '/m/06_72j'}, {'id': 349, 'name': 'Pig', 'freebase_id': '/m/068zj'}, {'id': 350, 'name': 'Reptile', 'freebase_id': '/m/06bt6'}, {'id': 351, 'name': 'Rifle', 'freebase_id': '/m/06c54'}, {'id': 352, 'name': 'Lipstick', 'freebase_id': '/m/06c7f7'}, {'id': 353, 'name': 'Skateboard', 'freebase_id': '/m/06_fw'}, {'id': 354, 'name': 'Raven', 'freebase_id': '/m/06j2d'}, {'id': 355, 'name': 'High heels', 'freebase_id': '/m/06k2mb'}, {'id': 356, 'name': 'Red panda', 'freebase_id': '/m/06l9r'}, {'id': 357, 'name': 'Rose', 'freebase_id': '/m/06m11'}, {'id': 358, 'name': 'Rabbit', 'freebase_id': '/m/06mf6'}, {'id': 359, 'name': 'Sculpture', 'freebase_id': '/m/06msq'}, {'id': 360, 'name': 'Saxophone', 'freebase_id': '/m/06ncr'}, {'id': 361, 'name': 'Shotgun', 'freebase_id': '/m/06nrc'}, {'id': 362, 'name': 'Seafood', 'freebase_id': '/m/06nwz'}, {'id': 363, 'name': 'Submarine sandwich', 'freebase_id': '/m/06pcq'}, {'id': 364, 'name': 'Snowboard', 'freebase_id': '/m/06__v'}, {'id': 365, 'name': 'Sword', 'freebase_id': '/m/06y5r'}, {'id': 366, 'name': 'Picture frame', 'freebase_id': '/m/06z37_'}, {'id': 367, 'name': 'Sushi', 'freebase_id': '/m/07030'}, {'id': 368, 'name': 'Loveseat', 'freebase_id': '/m/0703r8'}, {'id': 369, 'name': 'Ski', 'freebase_id': '/m/071p9'}, {'id': 370, 'name': 'Squirrel', 'freebase_id': '/m/071qp'}, {'id': 371, 'name': 'Tripod', 'freebase_id': '/m/073bxn'}, {'id': 372, 'name': 'Stethoscope', 'freebase_id': '/m/073g6'}, {'id': 373, 'name': 'Submarine', 'freebase_id': '/m/074d1'}, {'id': 374, 'name': 'Scorpion', 'freebase_id': '/m/0755b'}, {'id': 375, 'name': 'Segway', 'freebase_id': '/m/076bq'}, {'id': 376, 'name': 'Training bench', 'freebase_id': '/m/076lb9'}, {'id': 377, 'name': 'Snake', 'freebase_id': '/m/078jl'}, {'id': 378, 'name': 'Coffee table', 'freebase_id': '/m/078n6m'}, {'id': 379, 'name': 'Skyscraper', 'freebase_id': '/m/079cl'}, {'id': 380, 'name': 'Sheep', 'freebase_id': '/m/07bgp'}, {'id': 381, 'name': 'Television', 'freebase_id': '/m/07c52'}, {'id': 382, 'name': 'Trombone', 'freebase_id': '/m/07c6l'}, {'id': 383, 'name': 'Tea', 'freebase_id': '/m/07clx'}, {'id': 384, 'name': 'Tank', 'freebase_id': '/m/07cmd'}, {'id': 385, 'name': 'Taco', 'freebase_id': '/m/07crc'}, {'id': 386, 'name': 'Telephone', 'freebase_id': '/m/07cx4'}, {'id': 387, 'name': 'Torch', 'freebase_id': '/m/07dd4'}, {'id': 388, 'name': 'Tiger', 'freebase_id': '/m/07dm6'}, {'id': 389, 'name': 'Strawberry', 'freebase_id': '/m/07fbm7'}, {'id': 390, 'name': 'Trumpet', 'freebase_id': '/m/07gql'}, {'id': 391, 'name': 'Tree', 'freebase_id': '/m/07j7r'}, {'id': 392, 'name': 'Tomato', 'freebase_id': '/m/07j87'}, {'id': 393, 'name': 'Train', 'freebase_id': '/m/07jdr'}, {'id': 394, 'name': 'Tool', 'freebase_id': '/m/07k1x'}, {'id': 395, 'name': 'Picnic basket', 'freebase_id': '/m/07kng9'}, {'id': 396, 'name': 'Cooking spray', 'freebase_id': '/m/07mcwg'}, {'id': 397, 'name': 'Trousers', 'freebase_id': '/m/07mhn'}, {'id': 398, 'name': 'Bowling equipment', 'freebase_id': '/m/07pj7bq'}, {'id': 399, 'name': 'Football helmet', 'freebase_id': '/m/07qxg_'}, {'id': 400, 'name': 'Truck', 'freebase_id': '/m/07r04'}, {'id': 401, 'name': 'Measuring cup', 'freebase_id': '/m/07v9_z'}, {'id': 402, 'name': 'Coffeemaker', 'freebase_id': '/m/07xyvk'}, {'id': 403, 'name': 'Violin', 'freebase_id': '/m/07y_7'}, {'id': 404, 'name': 'Vehicle', 'freebase_id': '/m/07yv9'}, {'id': 405, 'name': 'Handbag', 'freebase_id': '/m/080hkjn'}, {'id': 406, 'name': 'Paper cutter', 'freebase_id': '/m/080n7g'}, {'id': 407, 'name': 'Wine', 'freebase_id': '/m/081qc'}, {'id': 408, 'name': 'Weapon', 'freebase_id': '/m/083kb'}, {'id': 409, 'name': 'Wheel', 'freebase_id': '/m/083wq'}, {'id': 410, 'name': 'Worm', 'freebase_id': '/m/084hf'}, {'id': 411, 'name': 'Wok', 'freebase_id': '/m/084rd'}, {'id': 412, 'name': 'Whale', 'freebase_id': '/m/084zz'}, {'id': 413, 'name': 'Zebra', 'freebase_id': '/m/0898b'}, {'id': 414, 'name': 'Auto part', 'freebase_id': '/m/08dz3q'}, {'id': 415, 'name': 'Jug', 'freebase_id': '/m/08hvt4'}, {'id': 416, 'name': 'Pizza cutter', 'freebase_id': '/m/08ks85'}, {'id': 417, 'name': 'Cream', 'freebase_id': '/m/08p92x'}, {'id': 418, 'name': 'Monkey', 'freebase_id': '/m/08pbxl'}, {'id': 419, 'name': 'Lion', 'freebase_id': '/m/096mb'}, {'id': 420, 'name': 'Bread', 'freebase_id': '/m/09728'}, {'id': 421, 'name': 'Platter', 'freebase_id': '/m/099ssp'}, {'id': 422, 'name': 'Chicken', 'freebase_id': '/m/09b5t'}, {'id': 423, 'name': 'Eagle', 'freebase_id': '/m/09csl'}, {'id': 424, 'name': 'Helicopter', 'freebase_id': '/m/09ct_'}, {'id': 425, 'name': 'Owl', 'freebase_id': '/m/09d5_'}, {'id': 426, 'name': 'Duck', 'freebase_id': '/m/09ddx'}, {'id': 427, 'name': 'Turtle', 'freebase_id': '/m/09dzg'}, {'id': 428, 'name': 'Hippopotamus', 'freebase_id': '/m/09f20'}, {'id': 429, 'name': 'Crocodile', 'freebase_id': '/m/09f_2'}, {'id': 430, 'name': 'Toilet', 'freebase_id': '/m/09g1w'}, {'id': 431, 'name': 'Toilet paper', 'freebase_id': '/m/09gtd'}, {'id': 432, 'name': 'Squid', 'freebase_id': '/m/09gys'}, {'id': 433, 'name': 'Clothing', 'freebase_id': '/m/09j2d'}, {'id': 434, 'name': 'Footwear', 'freebase_id': '/m/09j5n'}, {'id': 435, 'name': 'Lemon', 'freebase_id': '/m/09k_b'}, {'id': 436, 'name': 'Spider', 'freebase_id': '/m/09kmb'}, {'id': 437, 'name': 'Deer', 'freebase_id': '/m/09kx5'}, {'id': 438, 'name': 'Frog', 'freebase_id': '/m/09ld4'}, {'id': 439, 'name': 'Banana', 'freebase_id': '/m/09qck'}, {'id': 440, 'name': 'Rocket', 'freebase_id': '/m/09rvcxw'}, {'id': 441, 'name': 'Wine glass', 'freebase_id': '/m/09tvcd'}, {'id': 442, 'name': 'Countertop', 'freebase_id': '/m/0b3fp9'}, {'id': 443, 'name': 'Tablet computer', 'freebase_id': '/m/0bh9flk'}, {'id': 444, 'name': 'Waste container', 'freebase_id': '/m/0bjyj5'}, {'id': 445, 'name': 'Swimming pool', 'freebase_id': '/m/0b_rs'}, {'id': 446, 'name': 'Dog', 'freebase_id': '/m/0bt9lr'}, {'id': 447, 'name': 'Book', 'freebase_id': '/m/0bt_c3'}, {'id': 448, 'name': 'Elephant', 'freebase_id': '/m/0bwd_0j'}, {'id': 449, 'name': 'Shark', 'freebase_id': '/m/0by6g'}, {'id': 450, 'name': 'Candle', 'freebase_id': '/m/0c06p'}, {'id': 451, 'name': 'Leopard', 'freebase_id': '/m/0c29q'}, {'id': 452, 'name': 'Axe', 'freebase_id': '/m/0c2jj'}, {'id': 453, 'name': 'Hand dryer', 'freebase_id': '/m/0c3m8g'}, {'id': 454, 'name': 'Soap dispenser', 'freebase_id': '/m/0c3mkw'}, {'id': 455, 'name': 'Porcupine', 'freebase_id': '/m/0c568'}, {'id': 456, 'name': 'Flower', 'freebase_id': '/m/0c9ph5'}, {'id': 457, 'name': 'Canary', 'freebase_id': '/m/0ccs93'}, {'id': 458, 'name': 'Cheetah', 'freebase_id': '/m/0cd4d'}, {'id': 459, 'name': 'Palm tree', 'freebase_id': '/m/0cdl1'}, {'id': 460, 'name': 'Hamburger', 'freebase_id': '/m/0cdn1'}, {'id': 461, 'name': 'Maple', 'freebase_id': '/m/0cffdh'}, {'id': 462, 'name': 'Building', 'freebase_id': '/m/0cgh4'}, {'id': 463, 'name': 'Fish', 'freebase_id': '/m/0ch_cf'}, {'id': 464, 'name': 'Lobster', 'freebase_id': '/m/0cjq5'}, {'id': 465, 'name': 'Garden Asparagus', 'freebase_id': '/m/0cjs7'}, {'id': 466, 'name': 'Furniture', 'freebase_id': '/m/0c_jw'}, {'id': 467, 'name': 'Hedgehog', 'freebase_id': '/m/0cl4p'}, {'id': 468, 'name': 'Airplane', 'freebase_id': '/m/0cmf2'}, {'id': 469, 'name': 'Spoon', 'freebase_id': '/m/0cmx8'}, {'id': 470, 'name': 'Otter', 'freebase_id': '/m/0cn6p'}, {'id': 471, 'name': 'Bull', 'freebase_id': '/m/0cnyhnx'}, {'id': 472, 'name': 'Oyster', 'freebase_id': '/m/0_cp5'}, {'id': 473, 'name': 'Horizontal bar', 'freebase_id': '/m/0cqn2'}, {'id': 474, 'name': 'Convenience store', 'freebase_id': '/m/0crjs'}, {'id': 475, 'name': 'Bomb', 'freebase_id': '/m/0ct4f'}, {'id': 476, 'name': 'Bench', 'freebase_id': '/m/0cvnqh'}, {'id': 477, 'name': 'Ice cream', 'freebase_id': '/m/0cxn2'}, {'id': 478, 'name': 'Caterpillar', 'freebase_id': '/m/0cydv'}, {'id': 479, 'name': 'Butterfly', 'freebase_id': '/m/0cyf8'}, {'id': 480, 'name': 'Parachute', 'freebase_id': '/m/0cyfs'}, {'id': 481, 'name': 'Orange', 'freebase_id': '/m/0cyhj_'}, {'id': 482, 'name': 'Antelope', 'freebase_id': '/m/0czz2'}, {'id': 483, 'name': 'Beaker', 'freebase_id': '/m/0d20w4'}, {'id': 484, 'name': 'Moths and butterflies', 'freebase_id': '/m/0d_2m'}, {'id': 485, 'name': 'Window', 'freebase_id': '/m/0d4v4'}, {'id': 486, 'name': 'Closet', 'freebase_id': '/m/0d4w1'}, {'id': 487, 'name': 'Castle', 'freebase_id': '/m/0d5gx'}, {'id': 488, 'name': 'Jellyfish', 'freebase_id': '/m/0d8zb'}, {'id': 489, 'name': 'Goose', 'freebase_id': '/m/0dbvp'}, {'id': 490, 'name': 'Mule', 'freebase_id': '/m/0dbzx'}, {'id': 491, 'name': 'Swan', 'freebase_id': '/m/0dftk'}, {'id': 492, 'name': 'Peach', 'freebase_id': '/m/0dj6p'}, {'id': 493, 'name': 'Coconut', 'freebase_id': '/m/0djtd'}, {'id': 494, 'name': 'Seat belt', 'freebase_id': '/m/0dkzw'}, {'id': 495, 'name': 'Raccoon', 'freebase_id': '/m/0dq75'}, {'id': 496, 'name': 'Chisel', 'freebase_id': '/m/0_dqb'}, {'id': 497, 'name': 'Fork', 'freebase_id': '/m/0dt3t'}, {'id': 498, 'name': 'Lamp', 'freebase_id': '/m/0dtln'}, {'id': 499, 'name': 'Camera', 'freebase_id': '/m/0dv5r'}, {'id': 500, 'name': 'Squash (Plant)', 'freebase_id': '/m/0dv77'}, {'id': 501, 'name': 'Racket', 'freebase_id': '/m/0dv9c'}, {'id': 502, 'name': 'Human face', 'freebase_id': '/m/0dzct'}, {'id': 503, 'name': 'Human arm', 'freebase_id': '/m/0dzf4'}, {'id': 504, 'name': 'Vegetable', 'freebase_id': '/m/0f4s2w'}, {'id': 505, 'name': 'Diaper', 'freebase_id': '/m/0f571'}, {'id': 506, 'name': 'Unicycle', 'freebase_id': '/m/0f6nr'}, {'id': 507, 'name': 'Falcon', 'freebase_id': '/m/0f6wt'}, {'id': 508, 'name': 'Chime', 'freebase_id': '/m/0f8s22'}, {'id': 509, 'name': 'Snail', 'freebase_id': '/m/0f9_l'}, {'id': 510, 'name': 'Shellfish', 'freebase_id': '/m/0fbdv'}, {'id': 511, 'name': 'Cabbage', 'freebase_id': '/m/0fbw6'}, {'id': 512, 'name': 'Carrot', 'freebase_id': '/m/0fj52s'}, {'id': 513, 'name': 'Mango', 'freebase_id': '/m/0fldg'}, {'id': 514, 'name': 'Jeans', 'freebase_id': '/m/0fly7'}, {'id': 515, 'name': 'Flowerpot', 'freebase_id': '/m/0fm3zh'}, {'id': 516, 'name': 'Pineapple', 'freebase_id': '/m/0fp6w'}, {'id': 517, 'name': 'Drawer', 'freebase_id': '/m/0fqfqc'}, {'id': 518, 'name': 'Stool', 'freebase_id': '/m/0fqt361'}, {'id': 519, 'name': 'Envelope', 'freebase_id': '/m/0frqm'}, {'id': 520, 'name': 'Cake', 'freebase_id': '/m/0fszt'}, {'id': 521, 'name': 'Dragonfly', 'freebase_id': '/m/0ft9s'}, {'id': 522, 'name': 'Common sunflower', 'freebase_id': '/m/0ftb8'}, {'id': 523, 'name': 'Microwave oven', 'freebase_id': '/m/0fx9l'}, {'id': 524, 'name': 'Honeycomb', 'freebase_id': '/m/0fz0h'}, {'id': 525, 'name': 'Marine mammal', 'freebase_id': '/m/0gd2v'}, {'id': 526, 'name': 'Sea lion', 'freebase_id': '/m/0gd36'}, {'id': 527, 'name': 'Ladybug', 'freebase_id': '/m/0gj37'}, {'id': 528, 'name': 'Shelf', 'freebase_id': '/m/0gjbg72'}, {'id': 529, 'name': 'Watch', 'freebase_id': '/m/0gjkl'}, {'id': 530, 'name': 'Candy', 'freebase_id': '/m/0gm28'}, {'id': 531, 'name': 'Salad', 'freebase_id': '/m/0grw1'}, {'id': 532, 'name': 'Parrot', 'freebase_id': '/m/0gv1x'}, {'id': 533, 'name': 'Handgun', 'freebase_id': '/m/0gxl3'}, {'id': 534, 'name': 'Sparrow', 'freebase_id': '/m/0h23m'}, {'id': 535, 'name': 'Van', 'freebase_id': '/m/0h2r6'}, {'id': 536, 'name': 'Grinder', 'freebase_id': '/m/0h8jyh6'}, {'id': 537, 'name': 'Spice rack', 'freebase_id': '/m/0h8kx63'}, {'id': 538, 'name': 'Light bulb', 'freebase_id': '/m/0h8l4fh'}, {'id': 539, 'name': 'Corded phone', 'freebase_id': '/m/0h8lkj8'}, {'id': 540, 'name': 'Sports uniform', 'freebase_id': '/m/0h8mhzd'}, {'id': 541, 'name': 'Tennis racket', 'freebase_id': '/m/0h8my_4'}, {'id': 542, 'name': 'Wall clock', 'freebase_id': '/m/0h8mzrc'}, {'id': 543, 'name': 'Serving tray', 'freebase_id': '/m/0h8n27j'}, {'id': 544, 'name': 'Kitchen & dining room table', 'freebase_id': '/m/0h8n5zk'}, {'id': 545, 'name': 'Dog bed', 'freebase_id': '/m/0h8n6f9'}, {'id': 546, 'name': 'Cake stand', 'freebase_id': '/m/0h8n6ft'}, {'id': 547, 'name': 'Cat furniture', 'freebase_id': '/m/0h8nm9j'}, {'id': 548, 'name': 'Bathroom accessory', 'freebase_id': '/m/0h8nr_l'}, {'id': 549, 'name': 'Facial tissue holder', 'freebase_id': '/m/0h8nsvg'}, {'id': 550, 'name': 'Pressure cooker', 'freebase_id': '/m/0h8ntjv'}, {'id': 551, 'name': 'Kitchen appliance', 'freebase_id': '/m/0h99cwc'}, {'id': 552, 'name': 'Tire', 'freebase_id': '/m/0h9mv'}, {'id': 553, 'name': 'Ruler', 'freebase_id': '/m/0hdln'}, {'id': 554, 'name': 'Luggage and bags', 'freebase_id': '/m/0hf58v5'}, {'id': 555, 'name': 'Microphone', 'freebase_id': '/m/0hg7b'}, {'id': 556, 'name': 'Broccoli', 'freebase_id': '/m/0hkxq'}, {'id': 557, 'name': 'Umbrella', 'freebase_id': '/m/0hnnb'}, {'id': 558, 'name': 'Pastry', 'freebase_id': '/m/0hnyx'}, {'id': 559, 'name': 'Grapefruit', 'freebase_id': '/m/0hqkz'}, {'id': 560, 'name': 'Band-aid', 'freebase_id': '/m/0j496'}, {'id': 561, 'name': 'Animal', 'freebase_id': '/m/0jbk'}, {'id': 562, 'name': 'Bell pepper', 'freebase_id': '/m/0jg57'}, {'id': 563, 'name': 'Turkey', 'freebase_id': '/m/0jly1'}, {'id': 564, 'name': 'Lily', 'freebase_id': '/m/0jqgx'}, {'id': 565, 'name': 'Pomegranate', 'freebase_id': '/m/0jwn_'}, {'id': 566, 'name': 'Doughnut', 'freebase_id': '/m/0jy4k'}, {'id': 567, 'name': 'Glasses', 'freebase_id': '/m/0jyfg'}, {'id': 568, 'name': 'Human nose', 'freebase_id': '/m/0k0pj'}, {'id': 569, 'name': 'Pen', 'freebase_id': '/m/0k1tl'}, {'id': 570, 'name': 'Ant', 'freebase_id': '/m/0_k2'}, {'id': 571, 'name': 'Car', 'freebase_id': '/m/0k4j'}, {'id': 572, 'name': 'Aircraft', 'freebase_id': '/m/0k5j'}, {'id': 573, 'name': 'Human hand', 'freebase_id': '/m/0k65p'}, {'id': 574, 'name': 'Skunk', 'freebase_id': '/m/0km7z'}, {'id': 575, 'name': 'Teddy bear', 'freebase_id': '/m/0kmg4'}, {'id': 576, 'name': 'Watermelon', 'freebase_id': '/m/0kpqd'}, {'id': 577, 'name': 'Cantaloupe', 'freebase_id': '/m/0kpt_'}, {'id': 578, 'name': 'Dishwasher', 'freebase_id': '/m/0ky7b'}, {'id': 579, 'name': 'Flute', 'freebase_id': '/m/0l14j_'}, {'id': 580, 'name': 'Balance beam', 'freebase_id': '/m/0l3ms'}, {'id': 581, 'name': 'Sandwich', 'freebase_id': '/m/0l515'}, {'id': 582, 'name': 'Shrimp', 'freebase_id': '/m/0ll1f78'}, {'id': 583, 'name': 'Sewing machine', 'freebase_id': '/m/0llzx'}, {'id': 584, 'name': 'Binoculars', 'freebase_id': '/m/0lt4_'}, {'id': 585, 'name': 'Rays and skates', 'freebase_id': '/m/0m53l'}, {'id': 586, 'name': 'Ipod', 'freebase_id': '/m/0mcx2'}, {'id': 587, 'name': 'Accordion', 'freebase_id': '/m/0mkg'}, {'id': 588, 'name': 'Willow', 'freebase_id': '/m/0mw_6'}, {'id': 589, 'name': 'Crab', 'freebase_id': '/m/0n28_'}, {'id': 590, 'name': 'Crown', 'freebase_id': '/m/0nl46'}, {'id': 591, 'name': 'Seahorse', 'freebase_id': '/m/0nybt'}, {'id': 592, 'name': 'Perfume', 'freebase_id': '/m/0p833'}, {'id': 593, 'name': 'Alpaca', 'freebase_id': '/m/0pcr'}, {'id': 594, 'name': 'Taxi', 'freebase_id': '/m/0pg52'}, {'id': 595, 'name': 'Canoe', 'freebase_id': '/m/0ph39'}, {'id': 596, 'name': 'Remote control', 'freebase_id': '/m/0qjjc'}, {'id': 597, 'name': 'Wheelchair', 'freebase_id': '/m/0qmmr'}, {'id': 598, 'name': 'Rugby ball', 'freebase_id': '/m/0wdt60w'}, {'id': 599, 'name': 'Armadillo', 'freebase_id': '/m/0xfy'}, {'id': 600, 'name': 'Maracas', 'freebase_id': '/m/0xzly'}, {'id': 601, 'name': 'Helmet', 'freebase_id': '/m/0zvk5'}]
regionspot/data/v3det.py ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from detectron2.data.datasets.register_coco import register_coco_instances
2
+ import os
3
+
4
+ from .v3det_categories import categories
5
+ def _get_builtin_metadata(categories):
6
+ id_to_name = {x['id']: x['name'] for x in categories}
7
+ thing_dataset_id_to_contiguous_id = {i + 1: i for i in range(len(categories))}
8
+ thing_classes = [id_to_name[k] for k in sorted(id_to_name)]
9
+
10
+ return {
11
+ "thing_dataset_id_to_contiguous_id": thing_dataset_id_to_contiguous_id,
12
+ "thing_classes": thing_classes}
13
+
14
+ def _get_builtin_metadata():
15
+ id_to_name = {x['id']: x['name'] for x in categories}
16
+ thing_dataset_id_to_contiguous_id = {i + 1: i for i in range(len(categories))}
17
+ thing_classes = [id_to_name[k] for k in sorted(id_to_name)]
18
+ return {
19
+ "thing_dataset_id_to_contiguous_id": thing_dataset_id_to_contiguous_id,
20
+ "thing_classes": thing_classes}
21
+
22
+
23
+ _PREDEFINED_SPLITS_V3DET = {
24
+ "v3det_train": ("v3det/V3Det/", "v3det/v3det_2023_v1_train.json"),
25
+ "v3det_val": ("v3det/V3Det/", "v3det/v3det_2023_v1_val.json"),
26
+ }
27
+
28
+ for key, (image_root, json_file) in _PREDEFINED_SPLITS_V3DET.items():
29
+ register_coco_instances(
30
+ key,
31
+ _get_builtin_metadata(),
32
+ os.path.join("datasets", json_file) if "://" not in json_file else json_file,
33
+ os.path.join("datasets", image_root),
34
+ )
regionspot/data/v3det_categories.py ADDED
The diff for this file is too large to render. See raw diff
 
regionspot/detector.py ADDED
@@ -0,0 +1,174 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from collections import namedtuple
2
+ from .modeling.regionspot import build_regionspot_model
3
+ import torch.cuda.amp as amp
4
+ import matplotlib.pyplot as plt
5
+ import numpy as np
6
+ import torch
7
+ import torch.nn.functional as F
8
+ from torch import nn
9
+ from einops import rearrange
10
+ import json
11
+ from detectron2.modeling import META_ARCH_REGISTRY
12
+ from .util.postprocessing import segmentation_postprocess
13
+
14
+ from detectron2.structures import Boxes, Instances
15
+ from .util.preprocessing import prepare_prompt_infer, prepare_prompt_train
16
+
17
+ __all__ = ["RegionSpot"]
18
+
19
+
20
+
21
+ @META_ARCH_REGISTRY.register()
22
+ class RegionSpot(nn.Module):
23
+ """
24
+ Implement RegionSpot
25
+ """
26
+ def __init__(self, cfg):
27
+ super().__init__()
28
+ self.device = torch.device(cfg.MODEL.DEVICE)
29
+ self.clip_type = cfg.MODEL.CLIP_TYPE
30
+ self.inference_box_type = cfg.MODEL.BOX_TYPE
31
+ self.clip_input_size = cfg.MODEL.CLIP_INPUT_SIZE
32
+ self.clip_target_size = (self.clip_input_size, self.clip_input_size)
33
+ self.model, _ = build_regionspot_model(clip_type = self.clip_type, is_training=cfg.MODEL.TRAINING, image_size=self.clip_input_size)
34
+ self.model.to(self.device)
35
+ if self.inference_box_type != 'GT':
36
+ path = './datasets/glip_results/nms_results_glip_tiny_model_o365_goldg_cc_sbu_lvis_val.json'
37
+ with open(path, 'r') as file:
38
+ self.pred_results = json.load(file)
39
+ else:
40
+ self.pred_results = None
41
+
42
+ @torch.no_grad()
43
+ def foward_inference(self, batched_inputs, do_postprocess=True):
44
+ with amp.autocast(enabled=True):
45
+ with torch.no_grad():
46
+ logits_per_image, pred_mask = self.model.forward_eval(batched_inputs, multimask_output=False)
47
+
48
+ image_sizes = [x["original_size"] for x in batched_inputs]
49
+ if self.inference_box_type == 'GT':
50
+ boxes = torch.stack([x["instances"].gt_boxes.tensor for x in batched_inputs], dim=0) #n, n_box, n_token, 256
51
+ if len(boxes[0]) == 0:
52
+ boxes=torch.tensor([[[0,0, image_sizes[0][0], image_sizes[0][1]]]])
53
+ else:
54
+ boxes = torch.stack([x["pred_boxes"] for x in batched_inputs], dim=0) #n, n_box, n_token, 256
55
+ scores = torch.stack([x["scores"] for x in batched_inputs], dim=0)
56
+
57
+
58
+ box_cls = logits_per_image
59
+ box_pred = boxes
60
+ if self.inference_box_type == 'GT':
61
+ results = self.inference_gt_box(box_cls, box_pred, pred_mask, image_sizes)
62
+ else:
63
+ results = self.inference_pred_box(box_cls, box_pred, scores, pred_mask, image_sizes)
64
+ if do_postprocess:
65
+ processed_results = []
66
+ for results_per_image, input_per_image, image_size in zip(results, batched_inputs, image_sizes):
67
+ height = input_per_image.get("height", image_size[0])
68
+ width = input_per_image.get("width", image_size[1])
69
+ r = segmentation_postprocess(results_per_image, height, width)
70
+ processed_results.append({"instances": r})
71
+ return processed_results
72
+ else:
73
+ return results
74
+
75
+ def foward_train(self, batched_inputs):
76
+ with amp.autocast(enabled=True):
77
+ outputs = self.model.forward_train(batched_inputs)
78
+ loss = {'loss': outputs}
79
+ return loss
80
+
81
+ def forward(self, batched_inputs, do_postprocess=True):
82
+ if not self.training:
83
+ # Prepare Prompt.
84
+ batched_inputs = prepare_prompt_infer(batched_inputs, pred_results = self.pred_results, target_size=self.clip_target_size)
85
+
86
+ results = self.foward_inference(batched_inputs)
87
+ return results
88
+
89
+ if self.training:
90
+ batched_inputs = prepare_prompt_train(batched_inputs, target_size=self.clip_target_size)
91
+ loss_dict = self.foward_train(batched_inputs)
92
+ return loss_dict
93
+
94
+
95
+
96
+ def inference_gt_box(self, box_cls, box_pred, pred_mask, image_sizes=None):
97
+
98
+ device = box_cls.device # assuming all tensors are on the same device
99
+ results = []
100
+
101
+ for logits, boxes, masks, img_size in zip(box_cls, box_pred, pred_mask, image_sizes):
102
+ # Calculate probabilities and flatten them
103
+ probs = F.softmax(logits, dim=-1)
104
+ probs_flattened = probs.view(-1)
105
+
106
+ # Determine number of top predictions to consider
107
+ top_num = min(900, len(probs_flattened))
108
+
109
+ # Get top-k values and indices
110
+ topk_probs, topk_indices = torch.topk(probs_flattened, top_num)
111
+
112
+ # Decode the top-k indices to get corresponding labels and boxes
113
+ topk_labels = topk_indices % logits.shape[1]
114
+ topk_boxes_indices = topk_indices // logits.shape[1]
115
+
116
+ # Ensure boxes, masks and topk_boxes_indices are on the same device
117
+ topk_boxes_indices = topk_boxes_indices.to(device)
118
+ boxes = boxes.to(device)
119
+ masks = masks.to(device)
120
+
121
+ # Retrieve predictions using the top-k indices
122
+ boxes_for_topk = boxes[topk_boxes_indices]
123
+ masks_for_topk = masks[topk_boxes_indices]
124
+ scores_for_topk = topk_probs # Modify accordingly if you have another score tensor
125
+ # Create Instances object for top-k predictions
126
+ result = Instances(img_size)
127
+ result.pred_boxes = Boxes(boxes_for_topk)
128
+ result.scores = scores_for_topk
129
+ result.pred_classes = topk_labels
130
+ result.pred_masks = masks_for_topk # Added masks to the result
131
+ results.append(result)
132
+
133
+ return results
134
+
135
+ def inference_pred_box(self, box_cls, box_pred, box_score, masks, image_sizes=None):
136
+
137
+ results = []
138
+
139
+ for i, (logits, box_pred_i, box_score_i, mask_i, img_size) in enumerate(zip(box_cls, box_pred, box_score, masks, image_sizes)):
140
+
141
+ logits = logits.cuda()
142
+ box_pred_i = box_pred_i.cuda()
143
+ box_score_i = box_score_i.cuda()
144
+
145
+ # Calculate probabilities and flatten them
146
+ probs = F.softmax(logits, dim=-1)
147
+ probs_flattened = probs.view(-1)
148
+
149
+ # Determine number of top predictions to consider
150
+ top_num = min(900, len(probs_flattened))
151
+
152
+ # Get top-k values and indices
153
+ topk_probs, topk_indices = torch.topk(probs_flattened, top_num)
154
+
155
+ # Decode the top-k indices to get corresponding labels and boxes
156
+ topk_labels = topk_indices % logits.shape[1]
157
+ topk_boxes_indices = topk_indices // logits.shape[1]
158
+
159
+ # Retrieve predictions using the top-k indices
160
+ boxes = box_pred_i[topk_boxes_indices]
161
+ masks = mask_i[topk_boxes_indices]
162
+ scores = box_score_i[topk_boxes_indices] * topk_probs
163
+
164
+ # Construct result for the current image
165
+ result = Instances(img_size)
166
+ result.pred_boxes = Boxes(boxes)
167
+ result.scores = scores
168
+ result.pred_classes = topk_labels
169
+ result.pred_masks = masks
170
+ results.append(result)
171
+
172
+ return results
173
+
174
+
regionspot/modeling/__pycache__/constants.cpython-38.pyc ADDED
Binary file (98.2 kB). View file
 
regionspot/modeling/__pycache__/decoder.cpython-38.pyc ADDED
Binary file (5 kB). View file
 
regionspot/modeling/__pycache__/regionspot.cpython-38.pyc ADDED
Binary file (8.88 kB). View file
 
regionspot/modeling/clip/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ from .clip import *
regionspot/modeling/clip/__pycache__/__init__.cpython-38.pyc ADDED
Binary file (227 Bytes). View file
 
regionspot/modeling/clip/__pycache__/clip.cpython-38.pyc ADDED
Binary file (8.36 kB). View file
 
regionspot/modeling/clip/__pycache__/model.cpython-38.pyc ADDED
Binary file (16.6 kB). View file