Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import numpy as np | |
import spaces | |
import torch | |
from diffusers import FluxPriorReduxPipeline, FluxPipeline | |
from diffusers.utils import load_image | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 2048 | |
pipe_prior_redux = FluxPriorReduxPipeline.from_pretrained( | |
"black-forest-labs/FLUX.1-Redux-dev", | |
revision="refs/pr/8", | |
torch_dtype=torch.bfloat16 | |
).to("cuda") | |
pipe = FluxPipeline.from_pretrained( | |
"black-forest-labs/FLUX.1-dev" , | |
text_encoder=None, | |
text_encoder_2=None, | |
torch_dtype=torch.bfloat16 | |
).to("cuda") | |
def infer(control_image, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)): | |
pipe_prior_output = pipe_prior_redux(control_image) | |
images = pipe( | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
generator=torch.Generator("cpu").manual_seed(seed), | |
**pipe_prior_output, | |
).images[0] | |
return images | |
css=""" | |
#col-container { | |
margin: 0 auto; | |
max-width: 520px; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown(f"""# FLUX.1 Redux [dev] | |
An adapter for FLUX [dev] to create image variations | |
[[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)] | |
""") | |
input_image = gr.Image(label="Image to create variations") | |
run_button = gr.Button("Run") | |
result = gr.Image(label="Result", show_label=False) | |
with gr.Accordion("Advanced Settings", open=False): | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance Scale", | |
minimum=1, | |
maximum=15, | |
step=0.1, | |
value=3.5, | |
) | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=50, | |
step=1, | |
value=28, | |
) | |
gr.on( | |
triggers=[run_button.click], | |
fn = infer, | |
inputs = [input_image, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], | |
outputs = [result, seed] | |
) | |
demo.launch() |