multimodalart's picture
Update app.py
51270f5 verified
raw
history blame
3.33 kB
import gradio as gr
import numpy as np
import spaces
import torch
from diffusers import FluxPriorReduxPipeline, FluxPipeline
from diffusers.utils import load_image
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
pipe_prior_redux = FluxPriorReduxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-Redux-dev",
revision="refs/pr/8",
torch_dtype=torch.bfloat16
).to("cuda")
pipe = FluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev" ,
text_encoder=None,
text_encoder_2=None,
torch_dtype=torch.bfloat16
).to("cuda")
@spaces.GPU
def infer(control_image, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
pipe_prior_output = pipe_prior_redux(control_image)
images = pipe(
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
generator=torch.Generator("cpu").manual_seed(seed),
**pipe_prior_output,
).images[0]
return images
css="""
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""# FLUX.1 Redux [dev]
An adapter for FLUX [dev] to create image variations
[[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)]
""")
input_image = gr.Image(label="Image to create variations")
run_button = gr.Button("Run")
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1,
maximum=15,
step=0.1,
value=3.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=28,
)
gr.on(
triggers=[run_button.click],
fn = infer,
inputs = [input_image, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
outputs = [result, seed]
)
demo.launch()