File size: 4,335 Bytes
1beac4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
abf3d6e
1beac4e
 
 
 
 
 
 
 
 
 
 
 
4fd56c0
 
1beac4e
 
 
 
 
 
 
 
 
 
 
4fd56c0
 
1beac4e
abf3d6e
 
 
 
 
 
 
1beac4e
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import argparse
import torch
from diffusers.utils import load_image, check_min_version
from diffusers import FluxPriorReduxPipeline, FluxFillPipeline
from diffusers import FluxTransformer2DModel
import numpy as np
from torchvision import transforms

def run_inference(
    image_path,
    mask_path,
    garment_path,
    size=(576, 768),
    num_steps=50,
    guidance_scale=30,
    seed=42,
    pipe=None
):
    # Build pipeline
    if pipe is None:
        transformer = FluxTransformer2DModel.from_pretrained(
            "xiaozaa/catvton-flux-alpha", 
            torch_dtype=torch.bfloat16
        )
        pipe = FluxFillPipeline.from_pretrained(
            "black-forest-labs/FLUX.1-dev",
            transformer=transformer,
            torch_dtype=torch.bfloat16
        ).to("cuda")
    else:
        pipe.to("cuda")

    pipe.transformer.to(torch.bfloat16)

    # Add transform
    transform = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize([0.5], [0.5])  # For RGB images
    ])
    mask_transform = transforms.Compose([
        transforms.ToTensor()
    ])

    # Load and process images
    print("image_path", image_path)
    image = load_image(image_path).convert("RGB").resize(size)
    mask = load_image(mask_path).convert("RGB").resize(size)
    garment = load_image(garment_path).convert("RGB").resize(size)

    # Transform images using the new preprocessing
    image_tensor = transform(image)
    mask_tensor = mask_transform(mask)[:1]  # Take only first channel
    garment_tensor = transform(garment)

    # Create concatenated images
    inpaint_image = torch.cat([garment_tensor, image_tensor], dim=2)  # Concatenate along width
    garment_mask = torch.zeros_like(mask_tensor)
    extended_mask = torch.cat([garment_mask, mask_tensor], dim=2)

    prompt = f"The pair of images highlights a clothing and its styling on a model, high resolution, 4K, 8K; " \
            f"[IMAGE1] Detailed product shot of a clothing" \
            f"[IMAGE2] The same cloth is worn by a model in a lifestyle setting."

    generator = torch.Generator(device="cuda").manual_seed(seed)

    result = pipe(
        height=size[1],
        width=size[0] * 2,
        image=inpaint_image,
        mask_image=extended_mask,
        num_inference_steps=num_steps,
        generator=generator,
        max_sequence_length=512,
        guidance_scale=guidance_scale,
        prompt=prompt,
    ).images[0]

    # Split and save results
    width = size[0]
    garment_result = result.crop((0, 0, width, size[1]))
    tryon_result = result.crop((width, 0, width * 2, size[1]))

    
    return garment_result, tryon_result

def main():
    parser = argparse.ArgumentParser(description='Run FLUX virtual try-on inference')
    parser.add_argument('--image', required=True, help='Path to the model image')
    parser.add_argument('--mask', required=True, help='Path to the agnostic mask')
    parser.add_argument('--garment', required=True, help='Path to the garment image')
    parser.add_argument('--output-garment', default='flux_inpaint_garment.png', help='Output path for garment result')
    parser.add_argument('--output-tryon', default='flux_inpaint_tryon.png', help='Output path for try-on result')
    parser.add_argument('--steps', type=int, default=50, help='Number of inference steps')
    parser.add_argument('--guidance-scale', type=float, default=30, help='Guidance scale')
    parser.add_argument('--seed', type=int, default=0, help='Random seed')
    parser.add_argument('--width', type=int, default=768, help='Width')
    parser.add_argument('--height', type=int, default=576, help='Height')
    
    args = parser.parse_args()
    
    check_min_version("0.30.2")
    
    garment_result, tryon_result = run_inference(
        image_path=args.image,
        mask_path=args.mask,
        garment_path=args.garment,
        num_steps=args.steps,
        guidance_scale=args.guidance_scale,
        seed=args.seed,
        size=(args.width, args.height)
    )
    output_garment_path=args.output_garment,
    output_tryon_path=args.output_tryon,
    
    if output_garment_path is not None:
        garment_result.save(output_garment_path)
    tryon_result.save(output_tryon_path)
    
    print("Successfully saved garment and try-on images")

if __name__ == "__main__":
    main()