Spaces:
Running
on
Zero
Running
on
Zero
File size: 1,569 Bytes
f610e83 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
from PIL import Image
import os
import numpy as np
from torchvision.transforms import functional as F
import torch
from torchmetrics.image.fid import FrechetInceptionDistance
# Paths setup
generated_dataset_path = "output/tryon_results"
original_dataset_path = "data/VITON-HD/test/image" # Replace with your actual original dataset path
# Get generated images
image_paths = sorted([os.path.join(generated_dataset_path, x) for x in os.listdir(generated_dataset_path)])
generated_images = [np.array(Image.open(path).convert("RGB")) for path in image_paths]
# Get corresponding original images
original_images = []
for gen_path in image_paths:
# Extract the XXXXXX part from "tryon_XXXXXX.jpg"
base_name = os.path.basename(gen_path) # get filename from path
original_id = base_name.replace("tryon_", "") # remove "tryon_" prefix
# Construct original image path
original_path = os.path.join(original_dataset_path, original_id)
original_images.append(np.array(Image.open(original_path).convert("RGB")))
def preprocess_image(image):
image = torch.tensor(image).unsqueeze(0)
image = image.permute(0, 3, 1, 2) / 255.0
return F.center_crop(image, (768, 1024))
real_images = torch.cat([preprocess_image(image) for image in original_images])
fake_images = torch.cat([preprocess_image(image) for image in generated_images])
print(real_images.shape, fake_images.shape)
fid = FrechetInceptionDistance(normalize=True)
fid.update(real_images, real=True)
fid.update(fake_images, real=False)
print(f"FID: {float(fid.compute())}") |