Spaces:
Running
on
Zero
Running
on
Zero
title: catvton-flux | |
emoji: 🖥️ | |
colorFrom: yellow | |
colorTo: pink | |
sdk: gradio | |
sdk_version: 5.0.1 | |
app_file: app.py | |
pinned: false | |
license: mit | |
# catvton-flux | |
An state-of-the-art virtual try-on solution that combines the power of [CATVTON](https://arxiv.org/abs/2407.15886) (CatVTON: Concatenation Is All You Need for Virtual Try-On with Diffusion Models) with Flux fill inpainting model for realistic and accurate clothing transfer. | |
Also inspired by [In-Context LoRA](https://arxiv.org/abs/2410.23775) for prompt engineering. | |
## Update | |
--- | |
**Latest Achievement** | |
(2024/11/26): | |
- Updated the weights. (Still training on the VITON-HD dataset only.) | |
- Reduce the fine-tuning weights size (46GB -> 23GB) | |
- Weights has better performance on garment small details/text. | |
(2024/11/25): | |
- Released lora weights. Lora weights achieved FID: `6.0675811767578125` on VITON-HD dataset. Test configuration: scale 30, step 30. | |
- Revise gradio demo. Added huggingface spaces support. | |
- Clean up the requirements.txt. | |
(2024/11/24): | |
- Released FID score and gradio demo | |
- CatVton-Flux-Alpha achieved **SOTA** performance with FID: `5.593255043029785` on VITON-HD dataset. Test configuration: scale 30, step 30. My VITON-HD test inferencing results available [here](https://drive.google.com/file/d/1T2W5R1xH_uszGVD8p6UUAtWyx43rxGmI/view?usp=sharing) | |
--- | |
## Showcase | |
| Original | Garment | Result | | |
|----------|---------|---------| | |
| ![Original](example/person/1.jpg) | ![Garment](example/garment/00035_00.jpg) | ![Result](example/result/1.png) | | |
| ![Original](example/person/1.jpg) | ![Garment](example/garment/04564_00.jpg) | ![Result](example/result/2.png) | | |
| ![Original](example/person/00008_00.jpg) | ![Garment](example/garment/00034_00.jpg) | ![Result](example/result/3.png) | | |
## Model Weights | |
Fine-tuning weights in Hugging Face: 🤗 [catvton-flux-alpha](https://huggingface.co/xiaozaa/catvton-flux-alpha) | |
LORA weights in Hugging Face: 🤗 [catvton-flux-lora-alpha](https://huggingface.co/xiaozaa/catvton-flux-lora-alpha) | |
The model weights are trained on the [VITON-HD](https://github.com/shadow2496/VITON-HD) dataset. | |
## Prerequisites | |
Make sure you are running the code with VRAM >= 40GB. (I run all my experiments on a 80GB GPU, lower VRAM will cause OOM error. Will support lower VRAM in the future.) | |
```bash | |
bash | |
conda create -n flux python=3.10 | |
conda activate flux | |
pip install -r requirements.txt | |
huggingface-cli login | |
``` | |
## Usage | |
Run the following command to try on an image: | |
LORA version: | |
```bash | |
python tryon_inference_lora.py \ | |
--image ./example/person/00008_00.jpg \ | |
--mask ./example/person/00008_00_mask.png \ | |
--garment ./example/garment/00034_00.jpg \ | |
--seed 4096 \ | |
--output_tryon test_lora.png \ | |
--steps 30 | |
``` | |
Fine-tuning version: | |
```bash | |
python tryon_inference.py \ | |
--image ./example/person/00008_00.jpg \ | |
--mask ./example/person/00008_00_mask.png \ | |
--garment ./example/garment/00034_00.jpg \ | |
--seed 42 \ | |
--output_tryon test.png \ | |
--steps 30 | |
``` | |
Run the following command to start a gradio demo with LoRA weights: | |
```bash | |
python app.py | |
``` | |
Run the following command to start a gradio demo without LoRA weights: | |
```bash | |
python app_no_lora.py | |
``` | |
Gradio demo: | |
<!-- Option 2: Using a thumbnail linked to the video --> | |
[![Demo](example/github.jpg)](https://upcdn.io/FW25b7k/raw/uploads/github.mp4) | |
## TODO: | |
- [x] Release the FID score | |
- [x] Add gradio demo | |
- [x] Release updated weights with better performance | |
- [x] Train a smaller model | |
- [ ] Support comfyui | |
## Citation | |
```bibtex | |
@misc{chong2024catvtonconcatenationneedvirtual, | |
title={CatVTON: Concatenation Is All You Need for Virtual Try-On with Diffusion Models}, | |
author={Zheng Chong and Xiao Dong and Haoxiang Li and Shiyue Zhang and Wenqing Zhang and Xujie Zhang and Hanqing Zhao and Xiaodan Liang}, | |
year={2024}, | |
eprint={2407.15886}, | |
archivePrefix={arXiv}, | |
primaryClass={cs.CV}, | |
url={https://arxiv.org/abs/2407.15886}, | |
} | |
@article{lhhuang2024iclora, | |
title={In-Context LoRA for Diffusion Transformers}, | |
author={Huang, Lianghua and Wang, Wei and Wu, Zhi-Fan and Shi, Yupeng and Dou, Huanzhang and Liang, Chen and Feng, Yutong and Liu, Yu and Zhou, Jingren}, | |
journal={arXiv preprint arxiv:2410.23775}, | |
year={2024} | |
} | |
``` | |
Thanks to [Jim](https://github.com/nom) for insisting on spatial concatenation. | |
Thanks to [dingkang](https://github.com/dingkwang) [MoonBlvd](https://github.com/MoonBlvd) [Stevada](https://github.com/Stevada) for the helpful discussions. | |
## License | |
- The code is licensed under the MIT License. | |
- The model weights have the same license as Flux.1 Fill and VITON-HD. | |