Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import gradio as gr | |
from tryon_inference import run_inference | |
import os | |
import numpy as np | |
from PIL import Image | |
import tempfile | |
import torch | |
from diffusers import FluxTransformer2DModel, FluxFillPipeline | |
import shutil | |
def find_cuda(): | |
# Check if CUDA_HOME or CUDA_PATH environment variables are set | |
cuda_home = os.environ.get('CUDA_HOME') or os.environ.get('CUDA_PATH') | |
if cuda_home and os.path.exists(cuda_home): | |
return cuda_home | |
# Search for the nvcc executable in the system's PATH | |
nvcc_path = shutil.which('nvcc') | |
if nvcc_path: | |
# Remove the 'bin/nvcc' part to get the CUDA installation path | |
cuda_path = os.path.dirname(os.path.dirname(nvcc_path)) | |
return cuda_path | |
return None | |
cuda_path = find_cuda() | |
if cuda_path: | |
print(f"CUDA installation found at: {cuda_path}") | |
else: | |
print("CUDA installation not found") | |
device = torch.device('cuda') | |
print('Loading diffusion model ...') | |
transformer = FluxTransformer2DModel.from_pretrained( | |
"xiaozaa/catvton-flux-alpha", | |
torch_dtype=torch.bfloat16 | |
) | |
pipe = FluxFillPipeline.from_pretrained( | |
"black-forest-labs/FLUX.1-dev", | |
transformer=transformer, | |
torch_dtype=torch.bfloat16 | |
).to(device) | |
print('Loading Finished!') | |
def gradio_inference( | |
image_data, | |
garment, | |
num_steps=50, | |
guidance_scale=30.0, | |
seed=-1, | |
width=768, | |
height=1024 | |
): | |
"""Wrapper function for Gradio interface""" | |
# Use temporary directory | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
# Save inputs to temp directory | |
temp_image = os.path.join(tmp_dir, "image.png") | |
temp_mask = os.path.join(tmp_dir, "mask.png") | |
temp_garment = os.path.join(tmp_dir, "garment.png") | |
# Extract image and mask from ImageEditor data | |
image = image_data["background"] | |
mask = image_data["layers"][0] # First layer contains the mask | |
# Convert to numpy array and process mask | |
mask_array = np.array(mask) | |
is_black = np.all(mask_array < 10, axis=2) | |
mask = Image.fromarray(((~is_black) * 255).astype(np.uint8)) | |
# Save files to temp directory | |
image.save(temp_image) | |
mask.save(temp_mask) | |
garment.save(temp_garment) | |
try: | |
# Run inference | |
_, tryon_result = run_inference( | |
pipe=pipe, | |
image_path=temp_image, | |
mask_path=temp_mask, | |
garment_path=temp_garment, | |
num_steps=num_steps, | |
guidance_scale=guidance_scale, | |
seed=seed, | |
size=(width, height) | |
) | |
return tryon_result | |
except Exception as e: | |
raise gr.Error(f"Error during inference: {str(e)}") | |
with gr.Blocks() as demo: | |
gr.Markdown(""" | |
# CATVTON FLUX Virtual Try-On Demo | |
Upload a model image, draw a mask, and a garment image to generate virtual try-on results. | |
[![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/xiaozaa/catvton-flux-alpha) | |
[![GitHub](https://img.shields.io/badge/github-%23121011.svg?style=for-the-badge&logo=github&logoColor=white)](https://github.com/nftblackmagic/catvton-flux) | |
""") | |
# gr.Video("example/github.mp4", label="Demo Video: How to use the tool") | |
with gr.Column(): | |
with gr.Row(): | |
with gr.Column(): | |
image_input = gr.ImageMask( | |
label="Model Image (Click 'Edit' and draw mask over the clothing area)", | |
type="pil", | |
height=600, | |
width=300 | |
) | |
gr.Examples( | |
examples=[ | |
["./example/person/00008_00.jpg"], | |
["./example/person/00055_00.jpg"], | |
["./example/person/00057_00.jpg"], | |
["./example/person/00067_00.jpg"], | |
["./example/person/00069_00.jpg"], | |
], | |
inputs=[image_input], | |
label="Person Images", | |
) | |
with gr.Column(): | |
garment_input = gr.Image(label="Garment Image", type="pil", height=600, width=300) | |
gr.Examples( | |
examples=[ | |
["./example/garment/04564_00.jpg"], | |
["./example/garment/00055_00.jpg"], | |
["./example/garment/00396_00.jpg"], | |
["./example/garment/00067_00.jpg"], | |
["./example/garment/00069_00.jpg"], | |
], | |
inputs=[garment_input], | |
label="Garment Images", | |
) | |
with gr.Column(): | |
tryon_output = gr.Image(label="Try-On Result", height=600, width=300) | |
with gr.Row(): | |
num_steps = gr.Slider( | |
minimum=1, | |
maximum=100, | |
value=30, | |
step=1, | |
label="Number of Steps" | |
) | |
guidance_scale = gr.Slider( | |
minimum=1.0, | |
maximum=50.0, | |
value=30.0, | |
step=0.5, | |
label="Guidance Scale" | |
) | |
seed = gr.Slider( | |
minimum=-1, | |
maximum=2147483647, | |
step=1, | |
value=-1, | |
label="Seed (-1 for random)" | |
) | |
width = gr.Slider( | |
minimum=256, | |
maximum=1024, | |
step=64, | |
value=768, | |
label="Width" | |
) | |
height = gr.Slider( | |
minimum=256, | |
maximum=1024, | |
step=64, | |
value=1024, | |
label="Height" | |
) | |
submit_btn = gr.Button("Generate Try-On", variant="primary") | |
with gr.Row(): | |
gr.Markdown(""" | |
### Notes: | |
- The model is trained on VITON-HD dataset. It focuses on the woman upper body try-on generation. | |
- The mask should indicate the region where the garment will be placed. | |
- The garment image should be on a clean background. | |
- The model is not perfect. It may generate some artifacts. | |
- The model is slow. Please be patient. | |
- The model is just for research purpose. | |
""") | |
submit_btn.click( | |
fn=gradio_inference, | |
inputs=[ | |
image_input, | |
garment_input, | |
num_steps, | |
guidance_scale, | |
seed, | |
width, | |
height | |
], | |
outputs=[tryon_output], | |
api_name="try-on" | |
) | |
demo.launch() |