Spaces:
Running
on
Zero
Running
on
Zero
release a lora version
Browse files- README.md +22 -6
- test_lora.png +0 -0
- tryon_inference_lora.py +134 -0
README.md
CHANGED
@@ -4,11 +4,13 @@ An state-of-the-art virtual try-on solution that combines the power of [CATVTON]
|
|
4 |
Also inspired by [In-Context LoRA](https://arxiv.org/abs/2410.23775) for prompt engineering.
|
5 |
|
6 |
## Update
|
7 |
-
[![SOTA](https://img.shields.io/badge/SOTA-FID%205.59-brightgreen)](https://drive.google.com/file/d/1T2W5R1xH_uszGVD8p6UUAtWyx43rxGmI/view?usp=sharing)
|
8 |
-
[![Dataset](https://img.shields.io/badge/Dataset-VITON--HD-blue)](https://github.com/shadow2496/VITON-HD)
|
9 |
|
10 |
---
|
11 |
-
**Latest Achievement**
|
|
|
|
|
|
|
|
|
12 |
- Released FID score and gradio demo
|
13 |
- CatVton-Flux-Alpha achieved **SOTA** performance with FID: `5.593255043029785` on VITON-HD dataset. Test configuration: scale 30, step 30. My VITON-HD test inferencing results available [here](https://drive.google.com/file/d/1T2W5R1xH_uszGVD8p6UUAtWyx43rxGmI/view?usp=sharing)
|
14 |
|
@@ -22,8 +24,8 @@ Also inspired by [In-Context LoRA](https://arxiv.org/abs/2410.23775) for prompt
|
|
22 |
| ![Original](example/person/00008_00.jpg) | ![Garment](example/garment/00034_00.jpg) | ![Result](example/result/3.png) |
|
23 |
|
24 |
## Model Weights
|
25 |
-
Hugging Face: 🤗 [catvton-flux-alpha](https://huggingface.co/xiaozaa/catvton-flux-alpha)
|
26 |
-
|
27 |
The model weights are trained on the [VITON-HD](https://github.com/shadow2496/VITON-HD) dataset.
|
28 |
|
29 |
## Prerequisites
|
@@ -40,6 +42,19 @@ huggingface-cli login
|
|
40 |
## Usage
|
41 |
|
42 |
Run the following command to try on an image:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
```bash
|
44 |
python tryon_inference.py \
|
45 |
--image ./example/person/00008_00.jpg \
|
@@ -64,7 +79,8 @@ Gradio demo:
|
|
64 |
- [x] Release the FID score
|
65 |
- [x] Add gradio demo
|
66 |
- [ ] Release updated weights with better performance
|
67 |
-
- [
|
|
|
68 |
|
69 |
## Citation
|
70 |
|
|
|
4 |
Also inspired by [In-Context LoRA](https://arxiv.org/abs/2410.23775) for prompt engineering.
|
5 |
|
6 |
## Update
|
|
|
|
|
7 |
|
8 |
---
|
9 |
+
**Latest Achievement**
|
10 |
+
(2024/11/25):
|
11 |
+
- Released lora weights.
|
12 |
+
|
13 |
+
(2024/11/24):
|
14 |
- Released FID score and gradio demo
|
15 |
- CatVton-Flux-Alpha achieved **SOTA** performance with FID: `5.593255043029785` on VITON-HD dataset. Test configuration: scale 30, step 30. My VITON-HD test inferencing results available [here](https://drive.google.com/file/d/1T2W5R1xH_uszGVD8p6UUAtWyx43rxGmI/view?usp=sharing)
|
16 |
|
|
|
24 |
| ![Original](example/person/00008_00.jpg) | ![Garment](example/garment/00034_00.jpg) | ![Result](example/result/3.png) |
|
25 |
|
26 |
## Model Weights
|
27 |
+
LORA weights in Hugging Face: 🤗 [catvton-flux-alpha](https://huggingface.co/xiaozaa/catvton-flux-alpha)
|
28 |
+
Fine-tuning weights in Hugging Face: 🤗 [catvton-flux-lora-alpha](https://huggingface.co/xiaozaa/catvton-flux-lora-alpha)
|
29 |
The model weights are trained on the [VITON-HD](https://github.com/shadow2496/VITON-HD) dataset.
|
30 |
|
31 |
## Prerequisites
|
|
|
42 |
## Usage
|
43 |
|
44 |
Run the following command to try on an image:
|
45 |
+
|
46 |
+
LORA version:
|
47 |
+
```bash
|
48 |
+
python tryon_inference_lora.py \
|
49 |
+
--image ./example/person/00008_00.jpg \
|
50 |
+
--mask ./example/person/00008_00_mask.png \
|
51 |
+
--garment ./example/garment/00034_00.jpg \
|
52 |
+
--seed 4096 \
|
53 |
+
--output_tryon test_lora.png \
|
54 |
+
--steps 30
|
55 |
+
```
|
56 |
+
|
57 |
+
Fine-tuning version:
|
58 |
```bash
|
59 |
python tryon_inference.py \
|
60 |
--image ./example/person/00008_00.jpg \
|
|
|
79 |
- [x] Release the FID score
|
80 |
- [x] Add gradio demo
|
81 |
- [ ] Release updated weights with better performance
|
82 |
+
- [x] Train a smaller model
|
83 |
+
- [ ] Support comfyui
|
84 |
|
85 |
## Citation
|
86 |
|
test_lora.png
ADDED
tryon_inference_lora.py
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import torch
|
3 |
+
from diffusers.utils import load_image, check_min_version
|
4 |
+
from diffusers import FluxPriorReduxPipeline, FluxFillPipeline
|
5 |
+
from diffusers import FluxTransformer2DModel
|
6 |
+
import numpy as np
|
7 |
+
from torchvision import transforms
|
8 |
+
|
9 |
+
def run_inference(
|
10 |
+
image_path,
|
11 |
+
mask_path,
|
12 |
+
garment_path,
|
13 |
+
size=(576, 768),
|
14 |
+
num_steps=50,
|
15 |
+
guidance_scale=30,
|
16 |
+
seed=42,
|
17 |
+
pipe=None
|
18 |
+
):
|
19 |
+
# Build pipeline
|
20 |
+
if pipe is None:
|
21 |
+
transformer = FluxTransformer2DModel.from_pretrained(
|
22 |
+
"xiaozaa/flux1-fill-dev-diffusers", ## The official Flux-Fill weights
|
23 |
+
torch_dtype=torch.bfloat16
|
24 |
+
)
|
25 |
+
print("Start loading LoRA weights")
|
26 |
+
state_dict, network_alphas = FluxFillPipeline.lora_state_dict(
|
27 |
+
pretrained_model_name_or_path_or_dict="xiaozaa/catvton-flux-lora-alpha", ## The tryon Lora weights
|
28 |
+
weight_name="pytorch_lora_weights.safetensors",
|
29 |
+
return_alphas=True
|
30 |
+
)
|
31 |
+
is_correct_format = all("lora" in key or "dora_scale" in key for key in state_dict.keys())
|
32 |
+
if not is_correct_format:
|
33 |
+
raise ValueError("Invalid LoRA checkpoint.")
|
34 |
+
|
35 |
+
FluxFillPipeline.load_lora_into_transformer(
|
36 |
+
state_dict=state_dict,
|
37 |
+
network_alphas=network_alphas,
|
38 |
+
transformer=transformer,
|
39 |
+
)
|
40 |
+
|
41 |
+
pipe = FluxFillPipeline.from_pretrained(
|
42 |
+
"black-forest-labs/FLUX.1-dev",
|
43 |
+
transformer=transformer,
|
44 |
+
torch_dtype=torch.bfloat16
|
45 |
+
).to("cuda")
|
46 |
+
else:
|
47 |
+
pipe.to("cuda")
|
48 |
+
|
49 |
+
pipe.transformer.to(torch.bfloat16)
|
50 |
+
|
51 |
+
# Add transform
|
52 |
+
transform = transforms.Compose([
|
53 |
+
transforms.ToTensor(),
|
54 |
+
transforms.Normalize([0.5], [0.5]) # For RGB images
|
55 |
+
])
|
56 |
+
mask_transform = transforms.Compose([
|
57 |
+
transforms.ToTensor()
|
58 |
+
])
|
59 |
+
|
60 |
+
# Load and process images
|
61 |
+
# print("image_path", image_path)
|
62 |
+
image = load_image(image_path).convert("RGB").resize(size)
|
63 |
+
mask = load_image(mask_path).convert("RGB").resize(size)
|
64 |
+
garment = load_image(garment_path).convert("RGB").resize(size)
|
65 |
+
|
66 |
+
# Transform images using the new preprocessing
|
67 |
+
image_tensor = transform(image)
|
68 |
+
mask_tensor = mask_transform(mask)[:1] # Take only first channel
|
69 |
+
garment_tensor = transform(garment)
|
70 |
+
|
71 |
+
# Create concatenated images
|
72 |
+
inpaint_image = torch.cat([garment_tensor, image_tensor], dim=2) # Concatenate along width
|
73 |
+
garment_mask = torch.zeros_like(mask_tensor)
|
74 |
+
extended_mask = torch.cat([garment_mask, mask_tensor], dim=2)
|
75 |
+
|
76 |
+
prompt = f"The pair of images highlights a clothing and its styling on a model, high resolution, 4K, 8K; " \
|
77 |
+
f"[IMAGE1] Detailed product shot of a clothing" \
|
78 |
+
f"[IMAGE2] The same cloth is worn by a model in a lifestyle setting."
|
79 |
+
|
80 |
+
generator = torch.Generator(device="cuda").manual_seed(seed)
|
81 |
+
|
82 |
+
result = pipe(
|
83 |
+
height=size[1],
|
84 |
+
width=size[0] * 2,
|
85 |
+
image=inpaint_image,
|
86 |
+
mask_image=extended_mask,
|
87 |
+
num_inference_steps=num_steps,
|
88 |
+
generator=generator,
|
89 |
+
max_sequence_length=512,
|
90 |
+
guidance_scale=guidance_scale,
|
91 |
+
prompt=prompt,
|
92 |
+
).images[0]
|
93 |
+
|
94 |
+
# Split and save results
|
95 |
+
width = size[0]
|
96 |
+
garment_result = result.crop((0, 0, width, size[1]))
|
97 |
+
tryon_result = result.crop((width, 0, width * 2, size[1]))
|
98 |
+
|
99 |
+
return garment_result, tryon_result
|
100 |
+
|
101 |
+
def main():
|
102 |
+
parser = argparse.ArgumentParser(description='Run FLUX virtual try-on inference')
|
103 |
+
parser.add_argument('--image', required=True, help='Path to the model image')
|
104 |
+
parser.add_argument('--mask', required=True, help='Path to the agnostic mask')
|
105 |
+
parser.add_argument('--garment', required=True, help='Path to the garment image')
|
106 |
+
parser.add_argument('--output_garment', default='flux_inpaint_garment.png', help='Output path for garment result')
|
107 |
+
parser.add_argument('--output_tryon', default='flux_inpaint_tryon.png', help='Output path for try-on result')
|
108 |
+
parser.add_argument('--steps', type=int, default=50, help='Number of inference steps')
|
109 |
+
parser.add_argument('--guidance_scale', type=float, default=30, help='Guidance scale')
|
110 |
+
parser.add_argument('--seed', type=int, default=0, help='Random seed')
|
111 |
+
parser.add_argument('--width', type=int, default=576, help='Width')
|
112 |
+
parser.add_argument('--height', type=int, default=768, help='Height')
|
113 |
+
|
114 |
+
args = parser.parse_args()
|
115 |
+
|
116 |
+
check_min_version("0.30.2")
|
117 |
+
|
118 |
+
garment_result, tryon_result = run_inference(
|
119 |
+
image_path=args.image,
|
120 |
+
mask_path=args.mask,
|
121 |
+
garment_path=args.garment,
|
122 |
+
num_steps=args.steps,
|
123 |
+
guidance_scale=args.guidance_scale,
|
124 |
+
seed=args.seed,
|
125 |
+
size=(args.width, args.height)
|
126 |
+
)
|
127 |
+
output_tryon_path=args.output_tryon
|
128 |
+
|
129 |
+
tryon_result.save(output_tryon_path)
|
130 |
+
|
131 |
+
print("Successfully saved garment and try-on images")
|
132 |
+
|
133 |
+
if __name__ == "__main__":
|
134 |
+
main()
|