File size: 9,179 Bytes
c94dde8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e157b2
c94dde8
 
 
 
 
 
8e157b2
c94dde8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e157b2
c94dde8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45b16c9
 
 
 
0e4f7b9
c94dde8
7f81b6d
c94dde8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
# Import the required libraries
import gradio as gr
import cv2 # OpenCV, to read and manipulate images
import easyocr # EasyOCR, for OCR
import torch # PyTorch, for deep learning  
import pymupdf # PDF manipulation
from transformers import pipeline # Hugging Face Transformers, for NER
import os # OS, for file operations
from glob import glob # Glob, to get file paths

##########################################################################################################
# Initiate the models

# Easyocr model
print("Initiating easyocr")
reader = easyocr.Reader(['en'], gpu=torch.cuda.is_available(), model_storage_directory='.')

# Use gpu if available
print("Using gpu if available")
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
print(f"Using device: {device}")

# Ner model
print("Initiating nlp pipeline")
nlp = pipeline("token-classification", model="dslim/distilbert-NER", device=device)

##########################################################################################################
## Functions

# Define img_format
img_format = "png"

# Convert pdf to set of images
def convert_to_images(pdf_file_path):

    # Create a directory to store pdf images
    pdf_images_dir = f'{pdf_file_path}_images'
    os.makedirs(pdf_images_dir, exist_ok=True)

    # DPI
    dpi = 150

    # Convert the PDF to images
    print("Converting PDF to images...")
    doc = pymupdf.open(pdf_file_path)  # open document
    for page in doc:  # iterate through the pages
        pix = page.get_pixmap(dpi=dpi)  # render page to an image
        pix.save(f"{pdf_images_dir}/page-{page.number}.{img_format}")  # store image as a PNG

    # Return the directory with the images
    return pdf_images_dir

# Do the redaction
def redact_image(pdf_image_path, redaction_score_threshold):

    # Loop through the images
    print("Redacting sensitive information...")

    print(f"Processing {pdf_image_path}...")
    # Read the image
    cv_image = cv2.imread(pdf_image_path)

    # Read the text from the image
    result = reader.readtext(cv_image, height_ths=0, width_ths=0, x_ths=0, y_ths=0)

    # Get the text from the result
    text = ' '.join([text for (bbox, text, prob) in result])

    # Perform NER on the text
    ner_results = nlp(text)

    # Draw bounding boxes
    for ((bbox, text, prob),ner_result) in zip(result, ner_results):

        # Get the coordinates of the bounding box
        (top_left, top_right, bottom_right, bottom_left) = bbox
        top_left = tuple(map(int, top_left))
        bottom_right = tuple(map(int, bottom_right))

        # Calculate the centers of the top and bottom of the bounding box
        # center_top = (int((top_left[0] + top_right[0]) / 2), int((top_left[1] + top_right[1]) / 2))
        # center_bottom = (int((bottom_left[0] + bottom_right[0]) / 2), int((bottom_left[1] + bottom_right[1]) / 2))


        # If the NER result is not empty, and the score is high
        if len(ner_result) > 0 and ner_result['score'] > redaction_score_threshold:

            # Get the entity and score
            # entity = ner_result[0]['entity']
            # score = str(ner_result[0]['score'])

            # Apply a irreversible redaction
            cv2.rectangle(cv_image, top_left, bottom_right, (0, 0, 0), -1)
        # else:
            # entity = 'O'
            # score = '0'
            
        # # Draw the bounding box
        # cv2.rectangle(cv_image, top_left, bottom_right, (0, 255, 0), 1)
        # # Draw the entity and score
        # cv2.putText(cv_image, entity, center_top, cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
        # cv2.putText(cv_image, score, center_bottom, cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0), 2)

    # Save the redacted image
    print(f"Saving redacted {pdf_image_path}...")
    redacted_image_path = pdf_image_path.replace(f'.{img_format}', f'_redacted.{img_format}')
    # Save the redacted image in png format
    cv2.imwrite(redacted_image_path, cv_image)

    return redacted_image_path

# Convert the set of redacted images to a pdf
def stich_images_to_pdf(redacted_image_files, input_pdf_path):

    # Sort the redacted images
    redacted_image_files.sort()

    # Convert the redacted images to a single PDF
    print("Converting redacted images to PDF...")
    redacted_pdf_path = input_pdf_path.replace('.pdf', '_redacted.pdf')

    doc = pymupdf.open()
    for redacted_image_file in redacted_image_files:
        img = pymupdf.open(redacted_image_file)  # open pic as document
        rect = img[0].rect  # pic dimension
        pdfbytes = img.convert_to_pdf()  # make a PDF stream
        img.close()  # no longer needed
        imgPDF = pymupdf.open("pdf", pdfbytes)  # open stream as PDF
        page = doc.new_page(width = rect.width,  # new page with ...
                        height = rect.height)  # pic dimension
        page.show_pdf_page(rect, imgPDF, 0)  # image fills the page
    doc.save(redacted_pdf_path)

    # print(f"PDF saved as {redacted_pdf_path}")

    return redacted_pdf_path

def cleanup(redacted_image_files, pdf_images, pdf_images_dir, original_pdf):

    # Remove the directory with the images
    print("Cleaning up...")

    # Remove the redacted images
    for file in redacted_image_files:
        os.remove(file)

    # Remove the pdf images
    for file in pdf_images:
        os.remove(file)

    # Remove the pdf images directory
    os.rmdir(pdf_images_dir)

    # Remove original pdf
    os.remove(original_pdf)

    return None

# Func to control ui
def predict(input_pdf_path, sensitivity):

    print("Setting threshold")
    # Convert sensitivity to threshold
    redaction_score_threshold = (100-sensitivity)/100

    # Convert the PDF to images
    print("Converting pdf to images")
    pdf_images_dir = convert_to_images(input_pdf_path)

    # Get the file paths of the images
    print("Gathering converted images")
    pdf_images = glob(f'{pdf_images_dir}/*.{img_format}', recursive=True)
    pdf_images.sort()

    # Redact images
    print("Redacting images")
    redacted_image_files = []

    for pdf_image in pdf_images:

        redacted_image_files.append(redact_image(pdf_image, redaction_score_threshold))


    # Convert the redacted images to a single PDF
    print("Stitching images to pdf")
    redacted_pdf_path = stich_images_to_pdf(redacted_image_files, input_pdf_path)

    print("Cleaning up")
    cleanup(redacted_image_files, pdf_images, pdf_images_dir, input_pdf_path)

    return redacted_pdf_path

##########################################################################################################

contact_text = """
# Contact Information

πŸ‘€  [Mitanshu Sukhwani](https://www.linkedin.com/in/mitanshusukhwani/)

βœ‰οΈ  mitanshu.sukhwani@gmail.com

πŸ™  [mitanshu7](https://github.com/mitanshu7)
"""

##########################################################################################################
# Gradio interface

with gr.Blocks(theme=gr.themes.Soft()) as demo:

    # Title and description
    gr.Markdown("# RedactNLP: Redact your PDF!")
    gr.Markdown("## How redaction happens:")
    gr.Markdown("""
                1. The PDF pages are converted to images using **[PyMuPDF](https://github.com/pymupdf/PyMuPDF)**.
                2. **[EasyOCR](https://github.com/JaidedAI/EasyOCR)** is run on the converted images to extract text.
                3. **[dslim/distilbert-NER](https://huggingface.co/dslim/distilbert-NER)** model does the token classification.
                4. Non-recoverable mask is applied to identified elements using **[OpenCV](https://github.com/opencv/opencv)**.
                5. The masked images are converted back to a PDF again using **[PyMuPDF](https://github.com/pymupdf/PyMuPDF)**.
                """)
    gr.Markdown("*Note: If you already have a ML setup, it is preferable that you download the [github repo](https://github.com/mitanshu7/RedactNLP) and use it offline. It offers better privacy and can use GPU for (much) faster computations while utilising a better model like **[FacebookAI/xlm-roberta-large-finetuned-conll03-english](https://huggingface.co/FacebookAI/xlm-roberta-large-finetuned-conll03-english)** or **[blaze999/Medical-NER](https://huggingface.co/blaze999/Medical-NER)***")
    
    # Input Section
    pdf_file_input = gr.File(file_count='single', file_types=['pdf'], label='Upload PDF', show_label=True, interactive=True)
    
    # Slider for results count
    slider_input = gr.Slider(
        minimum=0, maximum=100, value=80, step=1, 
        label="Sensitivity to remove elements. Higher is more sensitive, hence will redact aggresively."
    )

    # Submission Button
    submit_btn = gr.Button("Redact")
    
    # Output section
    output = gr.File(file_count='single', file_types=['pdf'], label='Download redacted PDF', show_label=True, interactive=False)

    # Attribution
    gr.Markdown(contact_text)

    # Link button click to the prediction function
    submit_btn.click(predict, [pdf_file_input, slider_input], output)


################################################################################

if __name__ == "__main__":
    demo.launch()