rajrathi commited on
Commit
b524f77
1 Parent(s): 7c5dd57

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -5
app.py CHANGED
@@ -18,12 +18,13 @@ def generate_latent_points(digit, latent_dim, n_samples, n_classes=10):
18
  labels = tf.keras.utils.to_categorical([digit for _ in range(n_samples)], n_classes)
19
  return tf.concat([random_latent_vectors, labels], 1)
20
 
21
- def create_digit_samples(digit, n_samples, latent_dim=latent_dim):
22
- random_vector_labels = generate_latent_points(digit, latent_dim, n_samples)
23
- examples = cgan_generator.predict(random_vector_labels)
 
24
  examples = examples * 255.0
25
  size = ceil(sqrt(n_samples))
26
- digit_images = np.zeros((28*size, 28*size))
27
  n = 0
28
  for i in range(size):
29
  for j in range(size):
@@ -31,7 +32,7 @@ def create_digit_samples(digit, n_samples, latent_dim=latent_dim):
31
  break
32
  digit_images[i* 28 : (i+1)*28, j*28 : (j+1)*28] = examples[n, :, :, 0]
33
  n += 1
34
-
35
  return digit_images
36
 
37
  description = "This model is based on the example created here: https://keras.io/examples/generative/conditional_gan/"
 
18
  labels = tf.keras.utils.to_categorical([digit for _ in range(n_samples)], n_classes)
19
  return tf.concat([random_latent_vectors, labels], 1)
20
 
21
+ def create_digit_samples(digit, n_samples):
22
+ latent_dim = 128
23
+ random_vector_labels = generate_latent_points(int(digit), latent_dim, int(n_samples))
24
+ examples = model.predict(random_vector_labels)
25
  examples = examples * 255.0
26
  size = ceil(sqrt(n_samples))
27
+ digit_images = np.zeros((28*size, 28*size), dtype=float)
28
  n = 0
29
  for i in range(size):
30
  for j in range(size):
 
32
  break
33
  digit_images[i* 28 : (i+1)*28, j*28 : (j+1)*28] = examples[n, :, :, 0]
34
  n += 1
35
+ digit_images = (digit_images/127.5) -1
36
  return digit_images
37
 
38
  description = "This model is based on the example created here: https://keras.io/examples/generative/conditional_gan/"