File size: 4,596 Bytes
3621473
 
009ac63
 
 
3621473
009ac63
3621473
 
 
 
 
009ac63
cc46c30
 
 
 
 
009ac63
 
3621473
 
 
 
 
 
 
009ac63
3621473
 
009ac63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3621473
 
009ac63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3621473
 
009ac63
 
 
 
 
 
 
 
cc46c30
 
009ac63
3621473
cc46c30
 
009ac63
7190d49
cc46c30
 
 
 
 
009ac63
 
 
 
 
cc46c30
3621473
 
cc46c30
 
3621473
cc46c30
009ac63
7190d49
cc46c30
 
 
 
 
009ac63
 
 
 
 
 
3621473
cc46c30
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import logging
import warnings

import gradio as gr
import pytube as pt
import torch
from huggingface_hub import model_info
from transformers import pipeline
from transformers.utils.logging import disable_progress_bar

warnings.filterwarnings("ignore")
disable_progress_bar()

# MODEL_NAME = "bofenghuang/whisper-large-v2-cv11-french"
MODEL_NAME = "bofenghuang/whisper-large-v3-french"
# MODEL_NAME = "/home/bhuang/transformers/examples/pytorch/speech-recognition/outputs/hf_whisper/whisper-large-v3-ft-french-pnc-ep5-bs280-lr4e6-wd001-audioaug-specaug"
# MODEL_NAME = "/home/bhuang/transformers/examples/pytorch/speech-recognition/outputs/hf_whisper/tmp_model"
# MODEL_NAME = "/projects/bhuang/models/asr/public/whisper-large-v3-french"
CHUNK_LENGTH_S = 30

logging.basicConfig(
    format="%(asctime)s [%(levelname)s] [%(name)s] %(message)s",
    datefmt="%Y-%m-%dT%H:%M:%SZ",
)
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)

device = 0 if torch.cuda.is_available() else "cpu"
logger.info(f"Model will be loaded on device `{device}`")

pipe = pipeline(
    task="automatic-speech-recognition",
    model=MODEL_NAME,
    chunk_length_s=CHUNK_LENGTH_S,
    device=device,
)

pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language="fr", task="transcribe")

def transcribe(microphone, file_upload):
    warn_output = ""
    if (microphone is not None) and (file_upload is not None):
        warn_output = (
            "WARNING: You've uploaded an audio file and used the microphone. "
            "The recorded file from the microphone will be used and the uploaded audio will be discarded.\n"
        )

    elif (microphone is None) and (file_upload is None):
        return "ERROR: You have to either use the microphone or upload an audio file"

    file = microphone if microphone is not None else file_upload

    text = pipe(file)["text"]

    logger.info(f"Transcription: {text}")

    return warn_output + text


def _return_yt_html_embed(yt_url):
    video_id = yt_url.split("?v=")[-1]
    HTML_str = (
        f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
        " </center>"
    )
    return HTML_str


def yt_transcribe(yt_url):
    yt = pt.YouTube(yt_url)
    html_embed_str = _return_yt_html_embed(yt_url)
    stream = yt.streams.filter(only_audio=True)[0]
    stream.download(filename="audio.mp3")

    text = pipe("audio.mp3")["text"]

    logger.info(f'Transcription of "{yt_url}": {text}')

    return html_embed_str, text


demo = gr.Blocks()

mf_transcribe = gr.Interface(
    fn=transcribe,
    inputs=[
        gr.components.Audio(sources="microphone", type="filepath", label="Record"),
        gr.components.Audio(sources="upload", type="filepath", label="Upload File"),
    ],
    # outputs="text",
    outputs=gr.components.Textbox(label="Transcription", show_copy_button=True),
    # layout="horizontal",
    theme="huggingface",
    title="Whisper French Demo 🇫🇷 : Transcribe Audio",
    # description=(
    #     "Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the the fine-tuned"
    #     f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
    #     " of arbitrary length."
    # ),
    allow_flagging="never",
)

yt_transcribe = gr.Interface(
    fn=yt_transcribe,
    inputs=[gr.components.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL")],
    # outputs=["html", "text"],
    outputs=[
        gr.components.HTML(label="YouTube Page"),
        gr.components.Textbox(label="Transcription", show_copy_button=True),
    ],
    # layout="horizontal",
    theme="huggingface",
    title="Whisper French Demo 🇫🇷 : Transcribe YouTube",
    # description=(
    #     "Transcribe long-form YouTube videos with the click of a button! Demo uses the the fine-tuned checkpoint:"
    #     f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files of"
    #     " arbitrary length."
    # ),
    allow_flagging="never",
)

with demo:
    gr.TabbedInterface([mf_transcribe, yt_transcribe], ["Transcribe Audio", "Transcribe YouTube"])

# demo.launch(server_name="0.0.0.0", debug=True, share=True)
# demo.launch(enable_queue=True)
# see https://github.com/gradio-app/gradio/issues/2551
demo.queue(max_size=10).launch(server_name="0.0.0.0", debug=True, share=True, ssl_certfile="/home/bhuang/tools/cert.pem", ssl_keyfile="/home/bhuang/tools/key.pem", ssl_verify=False)