import logging import warnings import gradio as gr import pytube as pt import torch from huggingface_hub import model_info from transformers import pipeline from transformers.utils.logging import disable_progress_bar warnings.filterwarnings("ignore") disable_progress_bar() # MODEL_NAME = "bofenghuang/whisper-large-v2-cv11-french" MODEL_NAME = "bofenghuang/whisper-large-v3-french" # MODEL_NAME = "/home/bhuang/transformers/examples/pytorch/speech-recognition/outputs/hf_whisper/whisper-large-v3-ft-french-pnc-ep5-bs280-lr4e6-wd001-audioaug-specaug" # MODEL_NAME = "/home/bhuang/transformers/examples/pytorch/speech-recognition/outputs/hf_whisper/tmp_model" # MODEL_NAME = "/projects/bhuang/models/asr/public/whisper-large-v3-french" CHUNK_LENGTH_S = 30 logging.basicConfig( format="%(asctime)s [%(levelname)s] [%(name)s] %(message)s", datefmt="%Y-%m-%dT%H:%M:%SZ", ) logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) device = 0 if torch.cuda.is_available() else "cpu" logger.info(f"Model will be loaded on device `{device}`") pipe = pipeline( task="automatic-speech-recognition", model=MODEL_NAME, chunk_length_s=CHUNK_LENGTH_S, device=device, ) pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language="fr", task="transcribe") def transcribe(microphone, file_upload): warn_output = "" if (microphone is not None) and (file_upload is not None): warn_output = ( "WARNING: You've uploaded an audio file and used the microphone. " "The recorded file from the microphone will be used and the uploaded audio will be discarded.\n" ) elif (microphone is None) and (file_upload is None): return "ERROR: You have to either use the microphone or upload an audio file" file = microphone if microphone is not None else file_upload text = pipe(file)["text"] logger.info(f"Transcription: {text}") return warn_output + text def _return_yt_html_embed(yt_url): video_id = yt_url.split("?v=")[-1] HTML_str = ( f'
' "
" ) return HTML_str def yt_transcribe(yt_url): yt = pt.YouTube(yt_url) html_embed_str = _return_yt_html_embed(yt_url) stream = yt.streams.filter(only_audio=True)[0] stream.download(filename="audio.mp3") text = pipe("audio.mp3")["text"] logger.info(f'Transcription of "{yt_url}": {text}') return html_embed_str, text demo = gr.Blocks() mf_transcribe = gr.Interface( fn=transcribe, inputs=[ gr.components.Audio(sources="microphone", type="filepath", label="Record"), gr.components.Audio(sources="upload", type="filepath", label="Upload File"), ], # outputs="text", outputs=gr.components.Textbox(label="Transcription", show_copy_button=True), # layout="horizontal", theme="huggingface", title="Whisper French Demo 🇫🇷 : Transcribe Audio", # description=( # "Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the the fine-tuned" # f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files" # " of arbitrary length." # ), allow_flagging="never", ) yt_transcribe = gr.Interface( fn=yt_transcribe, inputs=[gr.components.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL")], # outputs=["html", "text"], outputs=[ gr.components.HTML(label="YouTube Page"), gr.components.Textbox(label="Transcription", show_copy_button=True), ], # layout="horizontal", theme="huggingface", title="Whisper French Demo 🇫🇷 : Transcribe YouTube", # description=( # "Transcribe long-form YouTube videos with the click of a button! Demo uses the the fine-tuned checkpoint:" # f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files of" # " arbitrary length." # ), allow_flagging="never", ) with demo: gr.TabbedInterface([mf_transcribe, yt_transcribe], ["Transcribe Audio", "Transcribe YouTube"]) # demo.launch(server_name="0.0.0.0", debug=True, share=True) # demo.launch(enable_queue=True) # see https://github.com/gradio-app/gradio/issues/2551 demo.queue(max_size=10).launch(server_name="0.0.0.0", debug=True, share=True, ssl_certfile="/home/bhuang/tools/cert.pem", ssl_keyfile="/home/bhuang/tools/key.pem", ssl_verify=False)