Spaces:
Running
on
Zero
Running
on
Zero
#!/usr/bin/env python | |
# -*- coding: utf-8 -*- | |
# | |
# Copyright @2023 RhapsodyAI, ModelBest Inc. (modelbest.cn) | |
# | |
# @author: bokai xu <bokesyo2000@gmail.com> | |
# @date: 2024/07/13 | |
# | |
import tqdm | |
from PIL import Image | |
import hashlib | |
import torch | |
import fitz | |
import threading | |
import gradio as gr | |
def get_image_md5(img: Image.Image): | |
img_byte_array = img.tobytes() | |
hash_md5 = hashlib.md5() | |
hash_md5.update(img_byte_array) | |
hex_digest = hash_md5.hexdigest() | |
return hex_digest | |
def pdf_to_images(pdf_path, dpi=100): | |
doc = fitz.open(pdf_path) | |
images = [] | |
for page in tqdm.tqdm(doc): | |
pix = page.get_pixmap(dpi=dpi) | |
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples) | |
images.append(img) | |
return images | |
def calculate_md5_from_binary(binary_data): | |
hash_md5 = hashlib.md5() | |
hash_md5.update(binary_data) | |
return hash_md5.hexdigest() | |
class PDFVisualRetrieval: | |
def __init__(self, model, tokenizer): | |
self.tokenizer = tokenizer | |
self.model = model | |
self.reps = {} | |
self.images = {} | |
self.lock = threading.Lock() | |
def retrieve(self, knowledge_base: str, query: str, topk: int): | |
doc_reps = list(self.reps[knowledge_base].values()) | |
query_with_instruction = "Represent this query for retrieving relavant document: " + query | |
with torch.no_grad(): | |
query_rep = self.model(text=[query_with_instruction], image=[None], tokenizer=self.tokenizer).reps.squeeze(0) | |
doc_reps_cat = torch.stack(doc_reps, dim=0) | |
similarities = torch.matmul(query_rep, doc_reps_cat.T) | |
topk_values, topk_doc_ids = torch.topk(similarities, k=topk) | |
topk_values_np = topk_values.cpu().numpy() | |
topk_doc_ids_np = topk_doc_ids.cpu().numpy() | |
similarities_np = similarities.cpu().numpy() | |
all_images_doc_list = list(self.images[knowledge_base].values()) | |
images_topk = [all_images_doc_list[idx] for idx in topk_doc_ids_np] | |
return topk_doc_ids_np, topk_values_np, images_topk | |
def add_pdf(self, knowledge_base_name: str, pdf_file_path: str, dpi: int = 100): | |
if knowledge_base_name not in self.reps: | |
self.reps[knowledge_base_name] = {} | |
if knowledge_base_name not in self.images: | |
self.images[knowledge_base_name] = {} | |
doc = fitz.open(pdf_file_path) | |
print("model encoding images..") | |
for page in tqdm.tqdm(doc): | |
pix = page.get_pixmap(dpi=dpi) | |
image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples) | |
image_md5 = get_image_md5(image) | |
with torch.no_grad(): | |
reps = self.model(text=[''], image=[image], tokenizer=self.tokenizer).reps | |
self.reps[knowledge_base_name][image_md5] = reps.squeeze(0) | |
self.images[knowledge_base_name][image_md5] = image | |
return | |
def add_pdf_gradio(self, pdf_file_binary, progress=gr.Progress()): | |
knowledge_base_name = calculate_md5_from_binary(pdf_file_binary) | |
if knowledge_base_name not in self.reps: | |
self.reps[knowledge_base_name] = {} | |
else: | |
return knowledge_base_name | |
if knowledge_base_name not in self.images: | |
self.images[knowledge_base_name] = {} | |
dpi = 100 | |
doc = fitz.open("pdf", pdf_file_binary) | |
for page in progress.tqdm(doc): | |
with self.lock: # because we hope one 16G gpu only process one image at the same time | |
pix = page.get_pixmap(dpi=dpi) | |
image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples) | |
image_md5 = get_image_md5(image) | |
with torch.no_grad(): | |
reps = self.model(text=[''], image=[image], tokenizer=self.tokenizer).reps | |
self.reps[knowledge_base_name][image_md5] = reps.squeeze(0) | |
self.images[knowledge_base_name][image_md5] = image | |
return knowledge_base_name | |
def retrieve_gradio(self, knowledge_base: str, query: str, topk: int): | |
doc_reps = list(self.reps[knowledge_base].values()) | |
query_with_instruction = "Represent this query for retrieving relavant document: " + query | |
with torch.no_grad(): | |
query_rep = self.model(text=[query_with_instruction], image=[None], tokenizer=self.tokenizer).reps.squeeze(0) | |
doc_reps_cat = torch.stack(doc_reps, dim=0) | |
similarities = torch.matmul(query_rep, doc_reps_cat.T) | |
topk_values, topk_doc_ids = torch.topk(similarities, k=topk) | |
topk_values_np = topk_values.cpu().numpy() | |
topk_doc_ids_np = topk_doc_ids.cpu().numpy() | |
similarities_np = similarities.cpu().numpy() | |
all_images_doc_list = list(self.images[knowledge_base].values()) | |
images_topk = [all_images_doc_list[idx] for idx in topk_doc_ids_np] | |
return images_topk | |
if __name__ == "__main__": | |
from transformers import AutoModel | |
from transformers import AutoTokenizer | |
from PIL import Image | |
import torch | |
device = 'cuda:0' | |
# Load model, be sure to substitute `model_path` by your model path | |
model_path = 'RhapsodyAI/minicpm-visual-embedding-v0' # replace with your local model path | |
# pdf_path = "/home/jeeves/xubokai/minicpm-visual-embedding-v0/2406.07422v1.pdf" | |
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) | |
model = AutoModel.from_pretrained(model_path, trust_remote_code=True) | |
model.to(device) | |
retriever = PDFVisualRetrieval(model=model, tokenizer=tokenizer) | |
# topk_doc_ids_np, topk_values_np, images_topk = retriever.retrieve(knowledge_base='test', query='what is the number of VQ of this kind of codec method?', topk=1) | |
# # 2 | |
# topk_doc_ids_np, topk_values_np, images_topk = retriever.retrieve(knowledge_base='test', query='the training loss curve of this paper?', topk=1) | |
# # 3 | |
# topk_doc_ids_np, topk_values_np, images_topk = retriever.retrieve(knowledge_base='test', query='the experiment table?', topk=1) | |
# # 2 | |
with gr.Blocks() as app: | |
gr.Markdown("# Memex: OCR-free Visual Document Retrieval @RhapsodyAI") | |
with gr.Row(): | |
file_input = gr.File(type="binary", label="Upload PDF") | |
file_result = gr.Text(label="Knowledge Base ID (remember this!)") | |
process_button = gr.Button("Process PDF") | |
process_button.click(retriever.add_pdf_gradio, inputs=[file_input], outputs=file_result) | |
with gr.Row(): | |
kb_id_input = gr.Text(label="Your Knowledge Base ID") | |
query_input = gr.Text(label="Your Queston") | |
topk_input = inputs=gr.Number(value=1, minimum=1, maximum=5, step=1, label="Top K") | |
retrieve_button = gr.Button("Retrieve") | |
with gr.Row(): | |
images_output = gr.Gallery(label="Retrieved Pages") | |
retrieve_button.click(retriever.retrieve_gradio, inputs=[kb_id_input, query_input, topk_input], outputs=images_output) | |
app.launch() | |