File size: 7,109 Bytes
0949c3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
from datetime import date
from datetime import datetime
import re

import numpy as np  
import pandas as pd 
from PIL import Image
import plotly.express as px  
import plotly.graph_objects as go
import streamlit as st  
import time

from plotly.subplots import make_subplots

# Read CSV file into pandas and extract timestamp data
dfSentiment = pd.read_csv('sentiment_data.csv') ### YOUR LINE OF CODE HERE
dfSentiment['timestamp'] = [datetime.strptime(dt, '%Y-%m-%d') for dt in dfSentiment['timestamp'].tolist()]

# Multi-select columns to build chart
col_list = dfSentiment.columns.tolist() ### YOUR LINE OF CODE HERE #### Extract columns into a list

r_sentiment = re.compile(".*sentiment")
sentiment_cols = list(filter(r_sentiment.match, col_list)) ### YOUR LINE OF CODE HERE

r_post = re.compile(".*post") 
post_list = list(filter(r_post.match, col_list)) ### YOUR LINE OF CODE HERE

r_perc= re.compile(".*perc")
perc_list = list(filter(r_perc.match, col_list))

r_close = re.compile(".*close")
close_list = list(filter(r_close.match, col_list))

r_volume = re.compile(".*volume")
volume_list = list(filter(r_volume.match, col_list))

sentiment_cols = sentiment_cols + post_list
stocks_cols = perc_list + close_list + volume_list ### YOUR LINE OF CODE HERE

# Config for page
st.set_page_config(
    page_title= 'Sentiment Stock Experiment', ### YOUR LINE OF CODE HERE
    page_icon='✅',
    layout='wide',
)

with st.sidebar:
    # FourthBrain logo to sidebar
    fourthbrain_logo = Image.open('./images/fourthbrain_logo.png')
    st.image([fourthbrain_logo], width=300)

    # Date selection filters
    start_date_filter = st.date_input(
        ### YOUR LINE OF CODE HERE
        'Start Date',
        min(dfSentiment['timestamp']),
        min_value=min(dfSentiment['timestamp']),
        max_value=max(dfSentiment['timestamp'])
        )
        

    end_date_filter = st.date_input(
        'End Date',
        max(dfSentiment['timestamp']),
        min_value=min(dfSentiment['timestamp']),
        max_value=max(dfSentiment['timestamp'])
        )

    sentiment_select = st.selectbox('Select Sentiment/Reddit Data', sentiment_cols) ### YOUR LINE OF CODE HERE
    stock_select =st.selectbox('Select Stock Data', stocks_cols)  ### YOUR LINE OF CODE HERE

# Banner with TSLA and Reddit images
tsla_logo = Image.open('./images/tsla_logo.png') ### YOUR LINE OF CODE HERE
reddit_logo = Image.open('./images/reddit_logo.png')
st.image([tsla_logo, reddit_logo], width=200)

# dashboard title
### YOUR LINE OF CODE HERE
st.title('Sentiment Stock Experiment')

## dataframe filter
# start date
dfSentiment = dfSentiment[dfSentiment['timestamp'] >= datetime(start_date_filter.year, start_date_filter.month, start_date_filter.day)]
    
# end date
dfSentiment = dfSentiment[dfSentiment['timestamp'] <= datetime(end_date_filter.year, end_date_filter.month, end_date_filter.day)] ### YOUR LINE OF CODE HERE
dfSentiment = dfSentiment.reset_index(drop=True)

# creating a single-element container
placeholder = st.empty() ### YOUR LINE OF CODE HERE

# near real-time / live feed simulation
for i in range(1, len(dfSentiment)-1):

    # creating KPIs
    last_close =  dfSentiment['close'][i]
    last_close_lag1 = dfSentiment['close'][i-1]
    last_sentiment = dfSentiment[sentiment_select][i] ### YOUR LINE OF CODE HERE
    last_sentiment_lag1 = dfSentiment[sentiment_select][i-1] ### YOUR LINE OF CODE HERE


    with placeholder.container():

        # create columns
        kpi1, kpi2, kpi3 = st.columns(3)

        # fill in those three columns with respective metrics or KPIs
        kpi1.metric(
            label='Sentiment Score',
            value=round(last_sentiment, 3),
            delta=round(last_sentiment_lag1, 3),
        )
        
        kpi2.metric(
            label='Last Closing Price',
            ### YOUR LINE 1 OF CODE HERE
            value=round(last_close, 3),
            ### YOUR LINE 2 OF CODE HERE
            delta=round(last_close_lag1, 3),
        )
        

        # create two columns for charts
        fig_col1, fig_col2 = st.columns(2)
        
        with fig_col1:
            # Add traces
            fig=make_subplots(specs=[[{"secondary_y":True}]])


            fig.add_trace(                               
                go.Scatter(                          
                x=dfSentiment['timestamp'][0:i],
                y=dfSentiment[sentiment_select][0:i],
                name=sentiment_select,
                mode='lines',                            
                hoverinfo='none',                        
                )              
            )

            if sentiment_select.startswith('perc') == True:
                ### YOUR LINE OF CODE HERE
                yaxis_label = '% Change Sentiment'

            elif sentiment_select in sentiment_cols:
                ### YOUR LINE OF CODE HERE
                yaxis_label = 'Sentiment Score'

            elif sentiment_select in post_list:
                yaxis_label = 'Volume'

            fig.layout.yaxis.title=yaxis_label
                                          
            if stock_select.startswith('perc') == True:
                fig.add_trace(                               
                    go.Scatter(                          
                    x=dfSentiment['timestamp'][0:i],
                    y=dfSentiment[stock_select][0:i],
                    name=stock_select,
                    mode='lines',                            
                    hoverinfo='none', 
                    yaxis='y2',                    
                    ) 
                )
                fig.layout.yaxis2.title='% Change Stock Price ($US)'
            
            elif stock_select == 'volume':
                fig.add_trace(                               
                    go.Scatter(                          
                    x=dfSentiment['timestamp'][0:i],
                    y=dfSentiment[stock_select][0:i],
                    name=stock_select,
                    mode='lines',                            
                    hoverinfo='none', 
                    yaxis='y2',                    
                    ) 
                )
                
                fig.layout.yaxis2.title="Shares Traded"


            else:
                fig.add_trace(                               
                    go.Scatter(                          
                    x=dfSentiment['timestamp'][0:i],
                    y=dfSentiment[stock_select][0:i],
                    name=stock_select,
                    mode='lines',                            
                    hoverinfo='none', 
                    yaxis='y2',                    
                    ) 
                )

                fig.layout.yaxis2.title='Stock Price ($USD)'


            fig.layout.xaxis.title='Timestamp'

            # write the figure throught streamlit
            ### YOUR LINE OF CODE HERE
            st.plotly_chart(fig)


        st.markdown('### Detailed Data View')
        st.dataframe(dfSentiment.iloc[:, 1:][0:i])
        time.sleep(1)